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This paper introduces a novel efficient partial shape matching method named
IS-Match. We use sampled points from the silhouette as a shape representa-
tion. The sampled points can be ordered which in turn allows to formulate
the matching step as an order-preserving assignment problem. We propose an
angle descriptor between shape chords combining the advantages of global and
local shape description. An efficient integral image based implementation of
the matching step is introduced which allows detecting partial matches an or-
der of magnitude faster than comparable methods. We further show how the
proposed algorithm is used to calculate a global optimal Pareto frontier to de-
fine a partial similarity measure between shapes. Shape retrieval experiments
on standard shape datasets like MPEG-7 prove that state-of-the-art results are
achieved at reduced computational costs.

1. Introduction

Shape matching is a well investigated problem in computer vision and has
versatile applications as e.g., in object detection 1)–3), image retrieval 4), object
tracking 5) or action recognition 6). The most important part of designing a shape
matcher is the choice of the shape representation which has a significant effect
on the matching step. Shapes have for example been represented by curves 7),
medial axes 8), shock structures 9) or sampled points 10).

In general current shape matching algorithms can be divided into two cate-
gories: global and local approaches. Global methods compare the overall shapes
of the input objects by defining a global matching cost and an optimization al-
gorithm for finding the lowest cost match. One of the most popular methods
for global shape matching is the shape context proposed by Belongie, et al. 10).
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Their algorithm uses randomly sampled points as shape representation and is
based on a robust shape descriptor – the shape context – which allows to formu-
late the matching step as a correspondence problem. The shape context is the
basis for different extensions considering geodesic distances as proposed by Ling
and Jacobs 11) or the point ordering as shown by Scott and Nowak 12).

While such global matching methods work well on most of the standard shape
retrieval datasets, they cannot handle strong articulation, part deformations or
occlusions. For example, shape context is a global descriptor and local articula-
tions influence the description of every sampled point. To reduce this effect larger
histogram bins are used further away from the point. Although this reduces the
problem, e.g., occlusions still lead to matching errors as it is illustrated in Fig. 1
for the shape context based COPAP framework 12).

These problems are handled well by purely local matching methods as e.g.,
proposed by Chen, et al. 13), which accurately measure local similarity, but in
contrast fail to provide a strong global description for robust shape alignment.
In this work, we try to bridge the gap between the two worlds by combining their
advantages.

We propose a novel shape matching method denoted as IS-Match (Integral
Shape Match). We use sampled points along the silhouette as representation
and exploit the ordering of the points to formulate matching as order-preserving
assignment problem. We introduce a chord angle descriptor which combines local
and global information and is invariant to similarity transformations. An integral
image based matching algorithm detects partial matches with low computational
complexity. The method returns a set of partial matches and therefore also allows
matching between differently articulated shapes.

Our main contributions are: (1) a chord angle based descriptor combining local
and global information invariant to similarity transformations (2) an efficient
integral image based matching scheme where matching in practice takes only a
few milliseconds and (3) the calculation of a global optimal Pareto frontier for
measuring partial similarity.

The outline of the paper is as follows. Section 2 describes the partial shape
matching concept named IS-Match in detail. Section 3 presents a comprehensive
evaluation of the proposed algorithm for shape retrieval experiments on common
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(a) Reference 1 (b) Candidate 1 (c) Candidate 2

(d) Similarity: 44.19 (e) Similarity: 44.08

Fig. 1 Shape matching methods using global descriptors like COPAP 12) are not able to handle
occlusions or strong articulations. The same similarity value for the partially occluded
shape and a totally different one is returned.

datasets like MPEG-7 and an application for the task of unsupervised clustering
of shapes. All evaluations prove that state-of-the-art results are achieved at
reduced computational costs.

2. Partial Shape Matching: IS-Match

Our shape matching algorithm named IS-Match takes two shapes as input and
returns detected partial matches and a similarity score as result. Section 2.1
describes the shape representation used, which is an ordered sequence of points
sampled from the silhouette. Section 2.2 introduces a chord angle based descrip-
tor invariant to similarity transformations. In Section 2.3 an efficient integral
image based algorithm for matching the descriptor matrices to each other is
outlined, which allows detecting subparts of the contours that possess high sim-
ilarity with low computational complexity. Section 2.4 describes how a global
optimal Pareto frontier is calculated and the corresponding Salukwadze distance
is returned as measure for partial similarity. Finally, Section 2.5 analyzes the
required computational complexity for single shape matches.

2.1 Shape Representation
The first step of our method is to represent the shapes by a sequence of points

sampled from the contour. There are two different variants for point sampling:
(a) sampling the same number of points from the contours or (b) equidistant
sampling, i.e., fixing the contour length between sampled points. The type of
sampling significantly influences the invariance properties of our method. Based
on equidistant sampling occlusions as e.g., shown in Fig. 1 can be handled but
then only shapes at the same scale are correctly matched. By sampling the same
number of points our method becomes invariant to similarity transformations,
but strong occlusions cannot be handled anymore. In this paper we focus on
the equidistant sampling for the task of shape retrieval on single scale datasets.
Nevertheless all subsequent parts of the method are defined in a manner indepen-
dent of the sampling type. Therefore, we can switch the sampling type without
requiring any modifications of the method. Please note that in other applica-
tions, as e.g., shape based tracking 14) or recognizing actions by matching to pose
prototypes 6), a different sampling strategy might be preferred.

Because the proposed shape matching method focuses on analyzing silhouettes,
as e.g., required in the areas of segmentation, detection or tracking, the sampled
points can be ordered in a sequence which is necessary for the subsequent de-
scriptor calculation and the matching step. Thus, any input shape is represented
by the sequence of points P1 . . . PN , where N is the number of sampled points.

2.2 Shape Descriptor
The descriptor constitutes the basis for matching a point Pi of the reference

shape to a point Qj of the candidate shape. We formulate the subsequent match-
ing step presented in Section 2.3 as an order-preserving assignment problem.
Therefore, the descriptor should exploit the available point ordering information.
In comparison, the shape context descriptor loses all the ordering information
due to the histogram binning and for that reason does not consider the influence
of the local neighborhood on single point matches.

We propose a descriptor inspired by chord distributions. A chord is a line
joining two points of a region boundary, and the distribution of their lengths
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Fig. 2 Our shape descriptor is based on calculating N angles for each sampled point of the
shape. In this case Pi is the reference point and the calculation of the angle αij to the
point Pj with Δ = 3 is shown.

and angles was used as shape descriptor before, as e.g., by Cootes, et al. 15). Our
descriptor uses such chords, but instead of building distribution histograms, we
use the relative orientations between specifically chosen chords.

Our descriptor is based on angles αij which describe the relative spatial ar-
rangement of the sampled points. An angle αij is calculated between a chord
PiPj from a reference point Pi to another sampled point Pj and a chord PjPj−Δ

from Pj to Pj−Δ by

αij = )<
(
PiPj , PjPj−Δ

)
, (1)

where )< ( . . .) denotes the angle in the range of 0 to Pi between the two chords
and Pj−Δ is the point that comes Δ positions before Pj in the sequence as is
illustrated in Fig. 2. Since angles are preserved by a similarity transformation,
this descriptor is invariant to translation, rotation and scale.

In the same manner N different angles αi1 . . . αiN can be calculated for one
selected reference point Pi. Additionally, each of the sampled points can be
chosen as reference point and therefore a N × N matrix A defined as

(a) Shape 01 (b) Shape 02 (c) Shape 03

Fig. 3 Visualizations of distinct chord angle based shape descriptors. Bright areas indicate
parts of the silhouettes which significantly deviate from straight lines.

A =

⎛
⎜⎝

α11 · · · α1N

...
. . .

...
αN1 · · · αNN

⎞
⎟⎠ (2)

can be used to redundantly describe the entire shape. Obviously, elements on the
main diagonal α11, · · · , αNN are always zero. This descriptor matrix is not sym-
metric because it considers relative orientations. Please note, that such a shape
descriptor implicitly includes local information (close to the main diagonal) and
global information (further away from the diagonal). Figure 3 shows different
descriptor matrices for selected shapes. As can be seen the obtained descriptors
are highly discriminative where values close to zero (dark areas) represent a lo-
cally linear structure, whereas bright areas indicate parts of the silhouettes which
significantly deviate from straight lines.

The descriptor depends on which point is chosen as the first point of the se-
quence. For example the descriptor matrix A shown before changes to
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A(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

αkk . . . αk1 . . . αk(k−1)

...
. . .

... . . .
...

α1k . . . α11 . . . α1(k−1)

... . . .
...

. . .
...

α(k−1)k . . . α(k−1)1 . . . α(k−1)(k−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)

if the k-th point is set as the first point of the sequence. Because only closed
boundaries are considered, these two matrices A(k) and A are directly related by
a circular shift. Matrix A can be obtained by shifting the A(k) matrix k− 1 rows
up and k − 1 columns to the left. This is an important property for the efficient
descriptor matching algorithm presented in the next section. Please note further,
that this property only holds for closed boundaries which is also the focus of the
rest of the paper and the experimental evaluation.

2.3 Matching Algorithm
To find a partial match between two given shape contours R1 and R2 the

corresponding descriptor matrices A1 with size M ×M and A2 with size N ×N

are compared. For notational simplicity we assume that M ≤ N .
The aim of shape matching is to identify parts of the two shapes that are

similar to each other. In terms of comparing the two descriptor matrices this
equals to finding l× l sized blocks starting at the main diagonal elements A1(s, s)
and A2(t, t) of the two descriptor matrices which yield a small average angular
difference value Δ(s, t, l) between 0 and Pi defined by

Δ(s, t, l) =
1
l2

l−1∑
i=0

l−1∑
j=0

[A1 (s + i, s + j) − A2 (t + i, t + j)]2 (4)

between them. This equation is valid due to the previously explained property
that a different starting point leads to a circular shift of the descriptor matrix
(see Eq. (3)). To find such blocks, all different matching possibilities and chain
lenghts have to be considered and the brute-force method becomes inefficient for
larger number of points. Therefore, different authors 16) proposed approximations
where for example only every n-th point is considered as starting point.

We propose an algorithmic optimization to overcome the limitations of the

(a) Desc. Closed (b) Closed (c) Open (d) Desc. Open

Fig. 4 Articulation invariance is handled by returning a set of partially matching boundary
fragments. Corresponding fragments are depicted by the same color.

brute-force approach, which is based on an adaption of the Summed-Area-Table
(SAT) approach to calculate all the descriptor differences Δ(s, t, l). The SAT
concept was originally proposed for texture mapping and brought back to the
computer vision community by Viola and Jones 17) as integral image. The integral
image concept allows to calculate rectangle image features like the sum of all
pixel values for any scale and any location in constant time. Details on efficient
calculation of integral images can be found, e.g., in Ref. 18).

For calculating the similarity scores for all possible configuration triplets {s, t, l}
in the most efficient way N integral images Int1 . . . IntN each of size M ×M are
built for N descriptor difference matrices Θn defined by

Θn = A1 (1 : M, 1 : M) − A2 (n : n + M − 1, n : n + M − 1) , (5)
where A1 (1 : M, 1 : M) is the cropped M ×M square submatrix of A1 including
all elements of the first to the M -th row and the first to the M -th column. The
difference matrices Θn represent the N possibilities to match the point sequences
onto each other. Based on these N integral images Int1 . . . IntN the difference
values Δ(s, t, l) can be calculated for every block of any size starting at any point
on the diagonal in constant time.

As a final result all matching triplets {s, t, l} which provide a difference value
Δ(s, t, l) below a fixed threshold are returned. Obviously, the detected matches
may overlap. Thus, the final result is obtained by merging the different matches
providing a set of connected point correspondences. This ability of matching
parts between two input shapes allows to handle articulations, as it is illustrated
in Fig. 4, where for the two scissors four matched fragments are returned.
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2.4 Shape Similarity
It is important to provide a reasonable similarity measure in addition to the

identified matching point sequences, e.g., for tasks like shape retrieval. Com-
monly, a combination of descriptor difference, matched shape distances like the
Procrustes distance and bending energy of an estimated transformation like a
Thin Plate Spline is used. Since we focus on partial similarity evaluation we
adapt a measure described by Bronstein, et al. 19). They proposed to use the
Pareto-framework for quantitative interpretation of partial similarity. They de-
fine two quantities: partiality λ (X ′, Y ′), which describes the length of the parts
in terms of percentage covered of the entire silhouette between 0 and 1 (the higher
the value the smaller the part) and dissimilarity ε (X ′, Y ′), which measures the
dissimilarity between the parts, where X ′ and Y ′ are two contour parts of the
shape (the smaller the value the more similar the parts are). Please note, that
we do not normalize the descriptor differences obtained in Eq. (4), which might
range from zero to Pi. A pair Φ(X∗, Y ∗) = (λ (X∗, Y ∗) , ε (X∗, Y ∗)) of partiality
and dissimilarity values, fulfilling the criterion of lowest dissimilarity for the given
partiality, defines a Pareto optimum. All Pareto optimums can be visualized as
a curve, referred to as the set-valued Pareto frontier.

Since finding the Pareto frontier is a combinatorial problem in the discrete case,
mostly rough approximations are used as final distance measure. Our matching
algorithm automatically evaluates all possible matches for all possible lengths.
Therefore, by focusing on the discretization defined by our point sampling, we can
calculate a global optimal Pareto frontier, by returning the minimum descriptor
difference for all partialities.

Finally, to get a single value measuring the overall similarity between two pro-
vided shapes, the so-called Salukwadze distance ds is calculated based on the
Pareto frontier by

ds = inf
(X∗,Y ∗)

|Φ(X∗, Y ∗)|1 , (6)

where |. . .|1 is the L1-norm of the vector. Therefore, ds(X,Y ) measures the
distance from the utopia (0, 0) to the closest point on the Pareto frontier. The
Salukwadze distance is then returned as the shape matching similarity score.
Figure 5 illustrates the calculation of the global optimal Pareto frontier and

Fig. 5 IS-Match returns similarities for all possible matches at all fragment lengths which
allows calculating a global optimal Pareto frontier. The Salukwadze distance is returned
as partial similarity score.

Salukwadze distance.

2.5 Computational Complexity
An exhaustive search over all possible matches for all possible lengths has a

complexity of O(2n+t). Our proposed approach based on integral image analysis
enables matching in O(nm) time, where n and t are the number of sampled points
on the two input shapes. We implemented our method in C, which enables shape
matching on a desktop PC within milliseconds.

For comparison, Table 1 summarizes complexities and runtimes of current
state-of-the-art shape matching methods. As it is shown in Section 3, only 30
sampled points are required to provide close to state-of-the-art shape retrieval re-
sults, which is possible within only 3ms. Please note, that the runtimes may vary
due to differences in implementations and machine configurations. But as can be
seen in general IS-Match outperforms state-of-the-art concerning computational
complexity and actual runtime. To the best of our knowledge this constitutes
the fastest method for combinatorial matching of 2D shapes published so far.
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Table 1 Comparison of computational complexity and runtime in milliseconds for a single
match. Please note, that as it is shown in Fig. 6 our algorithm only requires 30
points to achieve competitive results on reference datasets.

Method N Complexity Runtime

Felzenszwalb 20) 100 O(t3k3) 500 ms

Scott 12) 100 O(mnl) 450 ms

IDSC 11) 100 O(t2n) 310 ms

SC 10) 100 O(t2n) 200 ms

Schmidt 21) 200 O(t2log(t)) X

Brendel and Todorovic 22) 100 O(nm) X
IS-Match 30 O(nm) 3 ms

3. Experimental Evaluation

To evaluate the overall quality of IS-Match, we first analyzed the influence of
the number of sampled points and different parametrizations on the performance
of shape retrieval on a common dataset in Section 3.1. The evaluation shows that
only approximately 30 sampled points are required to achieve promising results,
where a single match only requires 3ms of computation time outperforming all
other shape matching algorithms by an order of magnitude. Section 3.2 shows
results on the largest and currently most important benchmark for evaluating
shape matching algorithms, the MPEG-7 dataset. Finally, Section 3.3 analyzes
an application of IS-Match for the task of shape clustering.

3.1 Performance Analysis
To evaluate the influence of the number of sampled points and different param-

eterizations we applied IS-Match for the task of shape retrieval on two frequently
used datasets from Sharvit, et al. 23). The first dataset consists of 25 images of
6 different classes. Each shape of the dataset was matched against every other
shape of the dataset and the global optimal Salukwadze distance as described in
Section 2.4 was calculated for every comparison. Then for every reference im-
age all the other shapes were ranked by increasing similarity value. To evaluate
the retrieval performance the number of correct first-, second- and third ranked
matches that belong to the right class was counted. In all the experiments Δ was
set to 5, but experimental evaluations with different parameterizations revealed

Fig. 6 Retrieval results in dependence of number of sampled points on dataset of 23)

consisting of 25 shapes of 6 different classes. Maximum achievable score is 75.

Table 2 Comparison of retrieval rates on dataset of 23) consisting of 25 shapes of 6 different
classes. The number of correct first-, second- and third ranked matches is shown.

Algorithm Top 1 Top 2 Top 3 Sum

Sharvit, et al. 23) 23/25 21/25 20/25 64

Gdalyahu, et al. 24) 25/25 21/25 19/25 65

Belongie, et al. 10) 25/25 24/25 22/25 71

Scott and Nowak 12) 25/25 24/25 23/25 72

Biswas, et al. 25) 25/25 25/25 23/25 73

Ling and Jacobs 11) 25/25 24/25 25/25 74
IS-Match 25/25 25/25 24/25 74

that changing Δ only has a small effect on shape retrieval performance.
Figure 6 illustrates the performance of our algorithm on this dataset, where

the sum over all correct first-, second- and third ranked matches is shown. There-
fore, the best achievable performance value is 75. We present results of IS-Match
in dependence of the number of sampled points in a range from 20 to 100 sam-
pled points. As can be seen by sampling 30 points we achieve the highest score
of 25/25, 25/25, 24/25 which represents state-of-the-art for this dataset as it is
shown in Table 2.

The second analyzed dataset 23) has 9 classes each consisting of 11 images. We
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Table 3 Comparison of retrieval rates on KIMIA 99 dataset 23) consisting of 99 shapes of 9
different classes.

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Belongie, et al. 10) 97 91 88 85 84 77 75 66 56 37

Kuijper and Olson 8) 99 96 93 93 87 82 75 71 57 56

Biswas, et al. 25) 99 97 98 96 97 97 96 91 83 75

Ling and Jacobs 11) 99 99 99 98 98 97 97 98 94 79

Sebatian, et al. 9) 99 99 99 98 98 98 96 95 94 86

Felzenszwalb, et al. 20) 99 99 99 99 99 99 99 97 93 86
Our method 99 99 99 99 98 92 90 85 82 75

again performed an all vs. all comparison and ranked the similarity values for each
reference shape. To analyze the ranking properties of our approach we checked
if the 10 closest matches to each reference image are in the same category. As
outcome of the results on the first dataset we always sampled 30 points from the
boundary for matching. Table 3 compares the results to other algorithms. We
again achieve competitive results, e.g., the top 4 ranks in our results were always
correct.

To summarize, our algorithm achieves state-of-the-art results on the two
datasets with only 30 sampled points, which allows to perform a single match
within 3ms, outperforming the running time of all other shape matching algo-
rithms by an order of magnitude. But please note, that since our method heavily
depends on the ordering of the sampled silhouette points, it might be quite sen-
sitive to noise. This is not a problem for the clean shapes of the standard shape
matching datasets but might be an issue for application in different real-world
scenarios.

3.2 Shape Retrieval on MPEG-7 Dataset
We further applied IS-Match to the MPEG-7 silhouette dataset 26) which is

currently the most popular dataset for shape matching evaluation. The dataset
consists of 70 shape categories, where each category is represented by 20 different
images with high intra-class variability. The parametrization of our algorithm is
based on the results shown in the previous section. The overall shape matching
performance was evaluated by calculating the so-called bullseye rating, in which
each image is used as reference and compared to all of the other images. The

Table 4 Comparison of retrieval rates and estimated overall runtimes in hours (!) for cal-
culating the full N × N similarity matrix on MPEG-7 dataset consisting of 1,400
images showing 70 different classes.

Algorithm Mokht. 27) Belongie 10) Scott 12) Ling 28) Felz. 20) IS-Match

Score 75.44% 76.51% 82.46% 86.56% 87.70% 84.79%
Runtime X 54 h 122 h 84 h 136 h 1 h

Fig. 7 Shape matching result for the MPEG-7 silhouette dataset. For each of the 70 different
classes the bullseye score, i.e., the number of correct matches in the 40 first ranked
shapes, is shown. A total bullseye score of 84.79% is achieved.

mean percentage of correct images in the top 40 matches (the 40 images with the
highest shape similarity scores) is taken as bullseye rating.

The measured bullseye rating for IS-Match was 84.79% and is compared to
state-of-the-art algorithms in Table 4. As can be the seen the score is close
to the best ever achieved by Felzenszwalb, et al. 20) of 87.70%. But please note
that 20) uses a much more complex descriptor and requires about 500 ms per
match. Therefore, analyzing the entire dataset takes approximately 136 hours
for Ref. 20), while with IS-Match all similarity scores are provided within a single
hour (!). Figure 7 further illustrates the bullseye-scores for all the 70 different
classes independently, revealing that most of the classes are retrieved well. Only
two classes (Device 6 and Device 9) have a retrieval score below 50%.
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3.3 Shape Clustering
Experiments on the reference shape retrieval datasets revealed that the global

optimal Salukwadze distance provided by IS-Match captures a meaningful notion
of shape dissimilarity. Therefore, we applied it for clustering shapes, which has
versatile applications in computer vision. For example shape clusters are used
to improve the efficiency of current object detection methods 29),30) by providing
a hierarchical shape structure which allows to perform detection in an efficient
coarse-to-fine approach. It enables automatic labeling in image datasets by out-
lining existing groups and relations between them 31). Finding clusters of similar
shapes also facilitates the unsupervised clustering of object categories.

Shape clustering methods were recently presented by Schmidt, et al. 21) who
clustered 40 shapes of 4 classes using dynamic time warping matching and k-
means clustering. Yankov and Keogh 31) clustered shapes for grouping together
objects in large collections by a manifold clustering approach.

We use a two-step approach for shape clustering. First, we build a pairwise
similarity matrix by comparing every possible combination of shapes in the input
dataset. Second, we apply a pairwise or proximity-based clustering method on
the similarity matrix to find the clusters. The shape similarity measure is not
necessarily metric (unsymmetric, violation of the triangle inequality) which has
to be taken into account by the clustering method. While most classical methods
for pairwise clustering 32)–34) only consider symmetric similarity matrices, recent
methods as e.g., affinity propagation clustering 35) also work in non-metric spaces.

To prove the quality of the provided similarity scores of IS-Match and to find
the best suited clustering algorithm we evaluated all combinations between three
shape matching algorithms (Shape Context 10), COPAP 12) and IS-Match) and
three clustering algorithms (k-center clustering, hierarchical agglomerative clus-
tering and affinity propagation clustering).

While k-center clustering and hierarchical agglomerative clustering are rather
common algorithms, affinity propagation 36) was just recently proposed by Dueck
and Frey 36) and only first applications in computer vision for multiple view seg-
mentation 37) and image categorization 35) were presented. Affinity propagation
enables clustering of data points analyzing a pairwise similarity matrix. It is
based on iteratively exchanging messages between the data points until a good

Table 5 Comparison of combinations of shape matching and clustering methods on the
KIMIA 25 23) dataset consisting of 25 shapes for 6 classes. The F-values and the
mutual information scores are shown.

F-Value / MI K-Center Agglom. Clustering Affinity Propagation

Shape Context 0.52/0.66 0.56/0.70 0.77/0.76
COPAP 0.65/0.76 0.72/0.84 1.00/0.97
IS-Match 0.70/0.84 1.00/1.00 1.00/1.00

solution emerges. While most clustering methods only keep track of some can-
didate exemplars during search, affinity propagation considers all data points as
candidates. Affinity propagation is also able to handle missing data points and
non-metric similarity measures. Therefore, its perfectly suited for shape cluster-
ing, because in general shape similarities do not lie in a metric space.

We first analyzed shape clustering results for all possible combinations of shape
matchers and clustering methods on the dataset 23) already described in Sec-
tion 3.1 consisting of 25 images of 6 different classes. We used the default
parametrization for the two reference shape matching algorithms. For IS-Match
we again use the parameters defined in Section 3.1. Furthermore, for both k-
center clustering and hierarchical agglomerative clustering we set the number
of clusters to the true value, whereas for affinity propagation all preference pa-
rameters were set to the median of the similarity values, i.e., affinity propagation
finds the number of clusters by itself. The k-center algorithm was repeated 10,000
times to cope with the random initialization.

Table 5 summarizes the corresponding clustering results for the six possible
combinations of shape matchers and clustering algorithms. Clustering quality
is measured by the F-Value analyzing precision and recall and the information
theory based mutual information (MI) value. Therefore, in both cases the higher
the value the better the corresponding clustering result. As can be seen IS-Match
strongly outperforms the shape context and COPAP method in terms of cluster-
ing quality. Furthermore, affinity propagation clustering leads to better results
compared to k-center and hierarchical agglomerative clustering and additionally
does not require to fix the number of clusters.

In order to be able to visualize the results of shape clustering we projected
the shapes to a two-dimensional space by applying non-metric multi-dimensional
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(a) KIMIA-25 (b) MPEG-7

Fig. 8 Clustering results: a) Two-dimensional multi-dimensional scaling visualization of per-
fect clustering results on KIMIA 25 dataset 23). Different colors reflect the differ-
ent clusters identified by affinity propagation. b) Confusion matrix for clustering on
MPEG-7 shape dataset consisting of 1,400 shapes for 70 classes. Please note that this
result is achieved by affinity propagation without specifying the number of real clusters.

scaling (MDS) to the calculated shape similarity matrix. Because MDS requires
a symmetric similarity matrix, we use the minimum distance of the shape pair
comparisons. Figure 8 (a) illustrates the clustering result of IS-Match and affin-
ity propagation with color coded cluster assignment, where we get a perfect
clustering result (without specifying the number of clusters).

Finally, to demonstrate the high quality and efficiency of the shape clustering
method, we applied it to the MPEG-7 dataset. To be able to cluster the entire
MPEG-7 dataset (1,400 shapes) the full similarity matrix, containing matching
results for 1,960,000 shape comparisons (non-symmetric scores), has to be cal-
culated. This is possible using IS-Match in only 50 minutes (!) on a single-core
desktop PC. Performing clustering on such datasets based on shape context or
COPAP is not possible in reasonable time. Figure 8 (b) shows the confusion
matrix of the shape clustering result on MPEG-7 demonstrating excellent clus-
tering quality. The corresponding F-Value is 0.81 and the mutual information
value is 0.90. Please note, that these results are achieved without pre-specifying

the number of clusters, since affinity propagation finds a reasonable number (91)
using default parameters in an autonomous manner.

4. Conclusion

This paper introduced a partial shape matching method denoted as IS-Match.
A chord angle based descriptor is presented which in combination with an ef-
ficient matching step allows detecting subparts of two shapes that possess high
similarity. We proposed a fast integral image based implementation which enables
matching two shapes within a few milliseconds. Shape retrieval and clustering
experiments on common datasets like the MPEG-7 silhouette dataset proved that
promising results are achieved at reduced computational costs. Due to the ef-
ficiency of the proposed algorithm it is also suited for real-time applications as
e.g., in action recognition by matching human silhouettes to reference prototypes
or for tracking applications, which will be the focus of future work.
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