

ICPR 2016, Cancún, Mexico

Efficient Volumetric Fusion of Airborne and Street-Side Data for Urban Reconstruction

András Bódis-Szomorú, Hayko Riemenschneider, Luc Van Gool

Street-side mobile mapping

INCOMPLETE MAP COVERAGE

DENSE 3D POINT CLOUD FROM IMAGERY

- no upper floors / roofs
- uncovered pedestrian-only areas
- undriven districts
- no courtyards
- occlusions (trees, parking cars, fences)
- often no ground

Airborne 3D acquisition

MULTI-VIEW STEREO FROM 15-CENTIMETER NADIR IMAGERY CAPTURED AT 3 KM

- no detail on street-side
- walls not visible
- shadows
- smoothed (blurry) walls
- defects (holes)

Idea of airborne/street-side fusion

Requirements: efficient + watertight + large-scale

This paper: efficient volumetric airborne/streetside fusion

Assumptions:

- visibility data (lines of sight) given
- point clouds are accurately geo-registered (via precise GPS/IMU or GCP's)

This paper: efficient volumetric airborne/streetside fusion

AIRBORNE ONLY (FOR COMPARISON)

OUR FUSION RESULT

This paper: efficient volumetric airborne/streetside fusion

OUR FUSION RESULT

AIRBORNE ONLY (FOR COMPARISON)

Related work

General surface reconstruction

- explicit methods, e.g. zippering
- depth map integration via TSDF, e.g. VRIP, KinectFusion (Curless & Levoy SG'96, Izadi et al. '06)
- s/t cut over voxel grid (unsigned, UDF) (Hornung & Kobbelt EG'06, Lempitsky & Boykov CVPR'07)
- Poisson Surface Reconstruction (octree) (Kazhdan EG'06)
- convex variational (voxels or height map), e.g. TV-L1, TGV-fusion
- cell complex (Chauve CVPR'10)
- 3DT approaches (Labatut et al. ICCV'07, Lafarge & Alliez EG'13)

Street-side & airborne data

- superpixel meshes (Bodis et al. CVIU'16)
- most address geo-localization / registration
- DSM + street-side LiDAR (Fruh & Zakhor CGA'03)
- Octree & Dual Contouring (Fiocco et al. 3DIM'05)
- Poisson Surface Reconstruction (Shan et al. 3DPVT'13)

Superpixel meshes (Bodis et al. CVIU'16)

Contributions

- 1st to propose 3DT-fusion for airborne/street-side
- *Point cloud blending against gross ray conflicts*
- *Techniques to reduce workload (large urban scenes)*
- Many experiments on detail vs. workload (sparse & dense input)

Volumetric surface reconstruction via 3DT

Volumetric surface reconstruction via 3DT

Volumetric surface reconstruction via 3DT

3D DELAUNAY TRIANGULATION

Alternatives

- voxels (poor scalability)
- stixels (2.5D)
- octrees (more complicated)
 - cell complex (poor scalability, needs planes)

Why 3DT?

simple

- adaptive / scalable
- efficient
- detail-preserving

Volumetric surface reconstruction via 3DT

RAY SHOOTING

Volumetric surface reconstruction via 3DT

Volumetric surface reconstruction via 3DT

REAL DATA (NOISY)

Post processing

- Denoising: simple smoothing
- Remove floating components

Expensive alternative

 Mesh tuning for photoconsistency (see Vu et al. PAMI 2012)

Raycasting and voting scheme

Raycasting and voting scheme

inside and outside score per ray per tetrahedron

Volumetric optimization

Volumetric optimization

Volumetric optimization

Airborne / street-side surface fusion

Airborne / street-side surface fusion

Airborne / street-side surface fusion

Airborne / street-side ray conflicts

ICPR 2016

25

Airborne / street-side ray conflicts

Airborne / street-side point cloud blending

3DT-BASED SURFACE RECONSTRUCTION

Data reduction / speed boost for large datasets

(illustration: mesh from airborne-only input)

O(10⁷) points (street / aerial) O(10⁸) rays O(km²) area

Data reduction / speed boost for large datasets

(1) Point decimation

(2) Ray decimation

Data reduction / speed boost for large datasets

(1) Point decimation

(2) Ray decimation

- voxel grid (with hashing)
- point clustering
- centroid prototype
- merge rays
- parameter: voxel size

Data reduction / speed boost for large datasets

(1) Point decimation

(2) Ray decimation

- voxel grid (with hashing)
- point clustering
- centroid prototype
- merge rays
- parameter: voxel size

Data reduction / speed boost for large datasets

(1) Point decimation

(2) Ray decimation

- voxel grid (with hashing)
- point clustering
- centroid prototype
- merge rays
- parameter: voxel size

Data reduction / speed boost for large datasets

(1) Point decimation

(2) Ray decimation

- voxel grid (with hashing)
- point clustering
- centroid prototype
- merge rays
- parameter: voxel size

- rays are dense
- keep one per point
- most perpendicular to reduce mistakes

Data reduction / speed boost for large datasets

(1) Point decimation

(2) Ray decimation

- voxel grid (with hashing)
- point clustering
- centroid prototype
- merge rays
- parameter: voxel size

- rays are dense
- keep one per point
- most perpendicular to reduce mistakes

Data reduction / speed boost for large datasets

(1) Point decimation

(2) Ray decimation

- voxel grid (with hashing)
- point clustering
- centroid prototype
- merge rays
- parameter: voxel size

- rays are dense
- keep one per point
- most perpendicular to reduce mistakes

- similar to limiting penetration depth
- truncate rays at points
- less tetrahedra crossed

Data reduction / speed boost for large datasets

(1) Point decimation

(2) Ray decimation

- voxel grid (with hashing)
- point clustering
- centroid prototype
- merge rays
- parameter: voxel size

- rays are dense
- keep one per point
- most perpendicular to reduce mistakes

- similar to limiting penetration depth
- truncate rays at points
- less tetrahedra crossed

Pipeline summary

Parameters

Parameter	Symbol	Value	_
Point neighborhood for normals	k	10	
Blending distance control	σ_b	2 m	
Blending smoothness	λ_b	1	
Inside scoring distance softness	σ_{in}	0.1 m	C
Outside scoring distance softness	σ_{out}	0.5 m	
Ray penetration limit	δ_{in}	$3\sigma_{in}$	experiments
Ray truncation distance (optional)	δ_{out}	$3\sigma_{out}$	
Inside ray count softness	γ_{in}	2	
Outside ray count softness	γ_{out}	2	
Smoothness weight (area term)	λ	1–3	

Datasets

Airborne

- Nadir
- 15 cm GSD
- CapturingReality
- 50 GCPs

Street-side

- Hand held camera
- VisualSfM (sparse) / PMVS (dense)
- registered to the airborne data (via IMU/GPS in industrial mobile mapping)

629 street-side images

847 street-side images

Registration accuracy in our experiments

registration errors between airborne and street-side point clouds at overlaps (distances in normal direction between mutual NNs)

Results: Process on Munsterhof

Airborne input (272k points)

Street-side input (1.5M points, PMVS)

Blending unary energies

Results: Process on Munsterhof

Surface reconstruction

Munsterhof Results

Limmatquai Results

- 2.6 M points
- 16.7 M tetrahedra
- 67.8 M rays
 - 7 points/m² aerial
 - 26 points/m² street
 - (20 cm vox decimation)
 - 12 GB memory
 - 21 min @ 3.4 GHz 1core
 - <5 min with decim / trunc

Results on different input types

~108 points/m²

~19 points/m²

~8 points/m²

Cumulated histogram of mesh errors (vs runtimes)

reference: our highest-density fused mesh (Munsterhof) **timings**: on a single 3.4 GHz CPU core

Numerical details (see paper)

Parameter variation	າຣ
(others fixed)	

(others fixed)												Accuracy measures					Timings						
Datasets				Detailed statistics																			
		¥													↓ ↓								
		Par	ams	3	Airborne data			Street-side data			3DT & Ray shooting Mesh			Mesh	Mesh distance from ref (cm)					Timings			
	Experiment	vox	tr	λ	#pts	#/m ²	#vis	#pts	#/m ²	#vis	#verts	#tets	#rays	#verts	mean ^a	$mean^s$	$10 \mathrm{cm}^s$	$50 \mathrm{cm}^s$	tet	ray	gco	total	
	PMVS (*)	0		3	272k	8.0	11.9	1.54M	108.0	6.8	1.75M	11.0M	13.2M	1.44M	(ref)	(ref)	(ref)	(ref)	32s	182s	27s	285s	
	PMVS (a)	0	\checkmark	3	272k	7.9	11.9	1.54M	106.8	6.8	1.75M	11.0M	13.2M	1.43M	2.9cm	1.3cm	0.7%	0.0%	32s	80s	28s	182s	
	PMVS (b)	0		3	272k	8.4	1.0	1.54M	108.9	1.0	1.75M	11.0M	1.75M	1.24M	6.7cm	1.5cm	0.8%	0.0%	32s	28s	34s	137s	
	PMVS (c)	0	\checkmark	3	272k	8.5	1.0	1.54M	108.5	1.0	1.75M	11.0M	1.75M	1.23M	8.6cm	1.6cm	0.9%	0.0%	32s	15s	34s	125s	
f	PMVS (d)	0.10		3	272k	8.4	1.0	780k	56.3	1.0	996k	6.27M	996k	756k	6.8cm	1.7cm	1.0%	0.0%	18s	16s	24s	82s	
lř	PMVS (e)	0.20		3	266k	8.2	1.0	310k	23.5	1.0	522k	3.33M	522k	416k	7.1cm	2.2cm	2.5%	0.1%	9.4s	7.9 s	16s	46s	
lünste	PMVS (f)	0.35		1	213k	6.3	1.0	127k	6.3	1.0	293k	1.89M	293k	262k	3.0cm	3.1cm	5.1%	0.3%	5.2s	4.2s	6.0s	23s	
	SfM (*)	0		1	272k	7.8	11.9	233k	18.6	4.6	452k	2.84M	3.91M	410k	3.6cm	7.7cm	19.8%	1.4%	8.0s	45s	7.6s	70s	
\geq	SfM (a)	0	\checkmark	1	272k	7.6	11.9	233k	18.7	4.6	452k	2.84M	3.91M	412k	3.6cm	7.1cm	18.1%	1.1%	9.8s	19s	6.5s	47s	
	SfM (b)	0		1	272k	7.8	1.0	233k	18.7	1.0	452k	2.84M	452k	382k	3.6cm	7.5cm	18.9%	1.3%	8.1s	6.4s	8.4s	33s	
	SfM (c)	0	\checkmark	1	272k	7.7	1.0	233k	19.0	1.0	452k	2.84M	452k	383k	3.5cm	7.5cm	18.7%	1.3%	8.5s	3.2s	8.4s	29s	
	aerial (*)	0		1	272k	6.2	11.9	no	not used			1.77M	3.24M	269k	3.1cm	69cm	86.4%	49.1%	5.0s	41s	3.3s	52s	
	aerial (a)	0	\checkmark	1	272k	6.3	1.0	no	ot used	,	272k	1.77M	272k	253k	3.1cm	70cm	86.5%	49.2%	7.3s	2.0s	4.0s	16s	
	PMVS (*)	0.20		3	1.65M	6.8	11.5	1.14M	26.0	43.6	2.60M	16.7M	67.8M	2.41M	(ref)	(ref)	(ref)	(ref)	49s	1059s	53s	1261s	
	PMVS (a)	0.20	\checkmark	3	1.65M	6.7	11.5	1.14M	26.3	43.6	2.60M	16.7M	67.8M	2.45M	0.2cm	0.3cm	0.9%	0.1%	51s	314s	53s	517s	
	PMVS (b)	0.20		3	1.65M	6.9	1.0	1.14M	26.5	1.0	2.60M	16.7M	2.60M	2.11M	3.7cm	2.6cm	8.1%	0.3%	49s	50s	79s	277s	
uai	PMVS (c)	0.20	\checkmark	3	1.65M	6.8	1.0	1.14M	26.9	1.0	2.60M	16.7M	2.60M	2.13M	3.8cm	3.0cm	8.9%	0.4%	50s	19s	78s	248s	
atq	SfM (*)	0		1	1.68M	6.5	11.5	259k	9.1	4.6	1.79M	11.5M	19.6M	1.72M	0.3cm	20cm	44.4%	8.9%	35s	262s	35s	380s	
Ï	SfM (a)	0	\checkmark	1	1.68M	6.5	11.5	259k	9.2	4.6	1.79M	11.5M	19.6M	1.73M	0.3cm	19cm	42.4%	7.7%	35s	95s	35s	213s	
.Ë	SfM (b)	0		1	1.68M	6.6	1.0	259k	9.0	1.0	1.79M	11.5M	1.79M	1.62M	0.6cm	19cm	44.0%	8.4%	34s	30s	39s	153s	
	SfM (c)	0	\checkmark	1	1.68M	6.5	1.0	259k	9.5	1.0	1.79M	11.5M	1.79M	1.62M	0.6cm	21cm	44.0%	8.8%	34s	12s	39s	134s	
	aerial (*)	0		1	1.68M	6.0	11.5	no	ot used	,	1.68M	10.9M	19.3M	1.66M	0.0cm	81cm	88%	47.3%	33s	269s	33s	340s	
	aerial (a)	0	\checkmark	1	1.68M	6.0	1.0	no	ot used		1.68M	10.9M	1.68M	1.57M	0.3cm	81cm	88%	47.4%	33s	12s	26s	103s	

۸ ـ

Qualitative effect of prior blending with normals

With Normals

Without Normals (Distance Only)

Qualitative effect of ray decimation and truncation

No reductions

Qualitative effect of ray decimation and truncation

Ray decimation

Qualitative effect of ray decimation and truncation

Ray decimation and truncation

Quick Comparison to Poisson Surface Reconstruction

Ours

- PMVS+aerial
- after blending
- full rays

Quick Comparison to Poisson Surface Reconstruction

Poisson

- PMVS+aerial
- after blending
- Depth 12, Div 8
- no rays used
- Inflated / smoother
- ground collapses
- narrow struct lost
- aerial artifacts remain

Conclusions

- *3DT-fusion of airborne & street-side data*
- *Point cloud blending against gross ray conflicts*
- *Reduction techniques for large urban scenes*
- *Detailed runtime vs. quality experimentation*
- *Complete & detailed (LoD-3) models in minutes / km²*

Efficient Volumetric Fusion of Airborne and Street-Side Data for Urban Reconstruction

