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Abstract

Recognizing human actions in video sequences is
frequently based on analyzing the shape of the human
silhouette as the main feature. In this paper we intro-
duce a method for recognizing different actions by com-
paring signatures of similarities to pre-defined shape
prototypes. In training, we build a vocabulary of shape
prototypes by clustering a training set of human silhou-
ettes and calculate prototype similarity signatures for
all training videos. During testing a prototype signature
is calculated for the test video and is aligned to each
training signature by dynamic time warping. A sim-
ple voting scheme over the similarities to the training
videos provides action classification results and tem-
poral alignments to the training videos. Experimental
evaluation on a reference data set demonstrates that
state-of-the-art results are achieved.

1 Introduction

Action recognition is currently one of the most in-
vestigated fields of research in computer vision. It
has many applications as e. g. in visual surveillance,
content-based video search, human computer interac-
tion or sports analysis. In general actions are defined
by diverse features like appearance and shape as well as
dynamic cues like spatio-temporal trajectories and opti-
cal flow fields. Combining these features in probabilis-
tic settings has shown to be an effective way to improve
action recognition performance [7].

Many of the recent state-of-the-art approaches inter-
mingle several features for action recognition. Mostly,
it is hard to judge which features contribute most to
the final result. A recent trend suggests that a combi-
nation of motion features like optical flow and appear-
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ance features like the powerful HoG descriptor achieves
best performance [13]. The question we seek to an-
swer in this paper is how much can the shape of the
human silhouette alone contribute to an action recogni-
tion system. This follows recent conclusions [11, 16]
that action recognition can be performed even from sin-
gle frames, by simply looking at the pose of the human
which is mainly defined by the silhouette shape.

In this paper we address the problem of action recog-
nition from videos by solely analyzing shape cues of
the human silhouette. We assume a rather constrained,
static video acquisition setting as e. g. it is common in
many visual surveillance scenarios. This allows pro-
viding approximate figure/ground segmentation results
for the humans in every frame. The key idea of our
approach is that we describe an entire sequence by a
signature of similarities to shape prototypes. Such an
approach using similarities to prototypes was also pro-
posed by Weinland et al. [16], but in contrast we use the
similarities to all shape prototypes as discriminative de-
scriptor for a video sequence, which is easily aligned
to other sequences by dynamic time warping. We show
that these shape signatures are a powerful descriptor,
where a very simple voting scheme is sufficient to ob-
tain state-of-the-art results on a reference data set.

2 Action recognition

Our method mainly consists of two subsequent steps.
First, we identify shape prototypes from a set of pro-
vided human silhouettes containing the relevant poses
of all actions to be recognized. These prototypes are
found by a novel shape clustering method which is out-
lined in detail in Section 2.1. Second, for all videos
in the training set, we compare the extracted human sil-
houettes to each of theC obtained prototypes by a shape
matching method which yields an C × t similarity de-
scriptor for a video sequence of t frames. This step is
outlined in Section 2.2. Finally, to classify a test video
sequence, we again build the shape prototype signature
and align it to all videos of the training set by dynamic

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.443

1796

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.443

1800

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.443

1796

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.443

1796

2010 International Conference on Pattern Recognition

1051-4651/10 $26.00 © 2010 IEEE

DOI 10.1109/ICPR.2010.443

1796



time warping as it is described in Section 2.3. A simple
voting scheme using the dynamic time warping distance
is used to classify the sequence which yields state-of-
the-art results on a reference data set as it is demon-
strated in Section 3.

2.1 Shape prototype selection

As a first step, we automatically identify shape pro-
totypes from a set of provided human silhouettes includ-
ing all relevant poses from the actions to be recognized.
For prototype identification we apply a shape match-
ing based clustering approach. We first we build a pair-
wise shape similarity matrix by comparing all available
shapes to each other and then apply a pairwise cluster-
ing method on the calculated matrix.

Shape matching is a well investigated problem in
computer vision and several powerful methods exist [2].
In general, the applied method should be invariant to
similarity transformations and robust against noise and
outliers. Furthermore, since in our scenario an all vs. all
comparison has to be performed, shape matching has
to be as efficient as possible. We selected the COPAP
method [12], since the code is publicly available and
their method has shown to provide excellent results for
closed contours (since point ordering is considered) as
they are available in our setup. COPAP provides a sim-
ilarity score between two binary input silhouettes. The
additionally provided correspondences are not further
considered.

We assume that we have given P human silhouettes
and compare each of the shapes to all others. Since the
similarity scores aij provided by COPAP are not sym-
metric, this requires N2 comparisons and finally leads
to an N × N affinity matrix W = {w11, . . . , wNN}
which is obtained from the calculated distance matrix
A = {a11, . . . , aNN} by

wij = exp

(
−
a2

ij

σ2
ij

)
. (1)

As outlined in several papers the choice of the nor-
malization parameter σij is important to achieve good
clustering results. We normalize according to a method
proposed in [17] which defines

σij = σiσj with σi = A(i, iK) , (2)

where iK is theK’th nearest neighbor of shape i andK
is a parameter fixed to 8 in all experiments.

To obtain a cluster result and prototypes per cluster
it is possible to apply any pairwise clustering method
to the obtained affinity matrix W . The shape similar-
ity measure is not necessarily metric which has to be

taken into account by the clustering method. Unfortu-
nately, most classical methods for pairwise clustering as
e. g. K-Means or spectral clustering only consider met-
ric similarities. Obviously a pairwise clustering method
considering non-metric spaces would be preferable.

Therefore, we selected a recently proposed method
denoted as Affinity Propagation clustering [5] which
showed impressive performance on several data sets.
Affinity propagation is based on iteratively exchanging
messages between the data points until a good solu-
tion emerges. While most clustering methods only keep
track of some candidate exemplars during search, affin-
ity propagation considers all data points as candidates.
Furthermore, affinity propagation is also able to handle
missing data points and non-metric similarity measures
and it returns one of the data-points as prototype per
cluster. Therefore, it is perfectly suited for shape clus-
tering.

Thus, applying affinity propagation clustering onto
our N × N affinity matrix W divides our training set
into C different clusters and each cluster is represented
by a single prototype Pc. The so-called preference pa-
rameter of affinity propagation furthermore allows to
influence the number of prototypes. Please note, that
in the experiments outlined in Section 3 we always use
the default preference parameter, which is the median
of the affinity matrix W .

2.2 Shape prototype signatures

After obtaining the prototypes Pc as described in the
previous section we are now able to describe a video in
terms of a signature of similarities to the shape proto-
types. We again use COPAP as shape matching method
and compare the obtained silhouette of every frame in
the sequence to all of the prototypes Pc which yields
an C × t shape prototype similarity signature for a se-
quence of t frames. This process is illustrated in Fig-
ure 1, where we show the temporal changes of the sim-
ilarity scores to two selected prototypes for a bending
action sequence. As can be seen, the scores smoothly
approach and retreat high similarity values to the indi-
vidual prototypes.

As it is illustrated in Figure 2 these signatures are
highly discriminative. In the next section we demon-
strate that even a very simple voting scheme enables to
achieve state-of-the-art results on a reference data set.

2.3 Classification by signature alignment

To classify a given video sequence we calculate its
prototype signature as described in the previous sec-
tion and compare it to all signatures of our training data
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Figure 1. Illustration of prototype signa-
ture calculation for a bending action. In
every frame shape differences to proto-
types (here two are shown) are calculated.
Low scores express high similarity.

set. To be able to compare two signatures we still have
to cope with the fact that the sequences contain differ-
ent numbers of frames. In [16] this problem was ad-
dressed by only considering an unordered set of proto-
type matches as video descriptor. Of course, in such an
approach the entire temporal information between con-
secutive human poses is lost. In contrast, we use the
entire shape signatures and align them to each other.

Alignment of time signals can be done by many
different methods, where dynamic time warping
(DTW) [10] is one of the most prominent ones. The
idea behind dynamic time warping is to align two in-
put signals (as e. g. our shape signatures) by warping
their time axes and by finally measuring the similarity
between the warped signals. In a first step, DTW calcu-
lates signal to signal similarities between all data points
of the two signals. In our case we use Euclidean dis-
tances as measure, where each signal point is defined
by the C-dimensional vector containing the similarities
to each of the C prototypes.

DTW provides a score between the two input signa-
tures. For classification, we calculate the score to all
training videos and simply assign the label of the video
with the highest score. Please note, that this simple vot-
ing approach yields state-of-the-art results on a refer-
ence data set as shown in the next section, but of course
one can use more sophisticated approaches for this step,
as e. g. learning the shape signatures by classifiers like
SVM or the recently popular random forest classifier.

Table 1. State-of-the-art average recogni-
tion rates for Weizmann data set [6].

Lin et al. (shape only) [8] 81.1%
Ali et al. [1] 92.6%
Bregonzio et al.[3] 96.7%
Riemenschneider et al. [9] 96.7%
Weinland et al.(50 exemplars) [16] 97.7%
Wang and Suter [14] 97.8%
Lin et al. (shape+motion) [8] 100%
Wang and Mori [15] 100%
Fathi and Mori [4] 100%
Our method (21 prototypes) 100%

3 Experiments

To evaluate the performance of our proposed shape
guided action recognition method, we applied it on the
well-known Weizmann data set 1 [6]. This data set con-
sists of ten different types of actions: bending, jump-
ing jack, jumping, jump in place, running, side jump-
ing, skipping, walking, one-hand and two-hand waving
performed by nine different humans. Testing is per-
formed in a leave-one-out-fashion on a per person ba-
sis, i. e. training is done on eight subjects and testing
on the unused subject and all its videos. Analogue to
recent papers, the average correct classification rate is
calculated as final result.

Using the simple voting scheme presented in the
previous section yields a perfect recognition result of
100% on the Weizmann data set. In comparison, Ta-
ble 1 summarizes recent state-of-the-art results. As
can be seen several authors already achieved a 100%
recognition score, but using much more sophisticated
approaches considering appearance, shape and motion
cues. For example in [8] also a perfect recognition re-
sult was achieved analyzing motion and shape informa-
tion, but solely based on shape data the reported score
was only 81.1%. Our method only analyzes shape cues,
neglecting any appearance and motion information in
the videos, but nevertheless achieves a 100% recogni-
tion rate. Furthermore, we achieve this result by us-
ing only 21 shape prototypes, whereas the comparable
method of [16] requires more than 100 prototypes, their
score using 21 exemplars is only approximately 90%.
To sum up, it seems that analyzing the shape of human
silhouettes alone is sufficient to achieve reasonable ac-
tion recognition results in such constrained scenarios.

1www.wisdom.weizmann.ac.il/˜vision/SpaceTimeActions.html
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Figure 2. Prototype similarity signatures (21 prototype rows and 100 frame columns per de-
scriptor) for three different actions performed by three humans. As can be seen the signatures
to the 21 prototypes are highly discriminative but bear reasonable similarities between the
same action performed by different humans.

4 Conclusions

This paper introduced signatures of similarity scores
to pre-defined human silhouette prototypes as powerful
descriptor for recognizing actions. In contrast to recent
methods, we use similarity information to all prototypes
by temporally aligning the descriptors of different video
sequences. Using the signatures, we achieve state-of-
the-art results on a reference data set by a very simple
voting scheme. Results demonstrate that analysis of the
shape of the human silhouette alone can significantly
contribute to action recognition systems in constrained
scenarios like a static video acquisition setting. Future
work will focus on analyzing the performance on other
data sets including more difficult scenarios using learn-
ing techniques to classify different shape prototype sig-
natures.
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