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Abstract

This work presents a robust online learning and recog-
nition system. The basic idea is to exploit information from
tracking an object during the recognition and/or learning
stage to obtain increased robustness and better recognition
results. Object tracking by means of an extended MSER
tracker is utilized to detect local features and construct their
trajectories. Compact object representations are formed
by summarizing the trajectories to corresponding frontal
MSERs. All steps are performed online including the MSER
detection, tracking, summarization, SIFT description as well
as learning and recognition based on a vocabulary tree. The
proposed method is evaluated on realistic video sequences
which prove the increased performance for robust online
recognition. The whole system runs at a frame rate of 9
Jps on a standard PC.

1 Introduction

In the past robust learning and recognition required some
form of offline processing to cope with the large amount
of required training data for the complex learning algo-
rithms [12]. In this paper we propose a robust system which
handles learning and recognition online providing state-of-
the-art recognition rates. Most object recognition systems
ignore the fact that usually a short sequence of the object
is available. In our system training is handled by a track-
ing algorithm which pursuits and learns the visible sides of
an object. In [13] it is suggested that a connection between
continuous views improves the recognition capabilities. The
association between various appearances of the same object
is realized by tracking. Tracking features on the object pro-
vides a better learning experience by carefully learning the
best views and summarizing these to an online retrievable
object representation.

Maximally Stable Extremal Regions (MSER) [6] are
used as interest regions. Matas et al. proposed this detec-
tor for wide-baseline stereo matching and defined extremal
regions which possess properties such as affine transforma-
tion invariance, multi-scale detection, and a fast enumera-
tion. Evaluations [8] show that MSERs are detecting sta-
ble features of arbitrary shape and scale. Despite the num-
ber of detected regions being low, the repeatability is better
than with other detectors especially for viewpoint changes
[7] and their efficiency is unbeaten [8].

The learning of various views involves tracking an ob-
ject by means of MSER tracking [1] which delivers an ef-
ficient and accurate matching of MSERs between consecu-
tive frames. The tracking is used to construct trajectories to
comprise all of the collected motion information and appear-
ances of an object. These trajectories are then evaluated on
their tracking quality and summarized to robust and com-
pact object representations. Previous work [3, 4] used the
relative change of a SIFT descriptor to detect a stable min-
imum where the trajectory contains the best representation.
In this work we introduce the notion of frontal MSERs for
optimal representation.

These object representations are described by a SIFT de-
scriptor [5] and stored for later retrieval. For this purpose
a vocabulary tree data structure [9] is incorporated to effi-
ciently insert new online learned objects and also to recog-
nize objects during the tracking.

The proposed system uses tracking for learning as well
as for recognition to compact the appearance of an ob-
ject. The combination of state-of-the-art detection, tracking,
robust summarization, description and retrieval techniques
provides the necessary boost to perform all steps in an on-
line process. Figure 1 illustrates the proposed system.

The outline of the paper is as follows: In Section 2 we
describe the object tracking algorithm used to build trajec-
tories. Section 3 shows how the object representation is
learned by summarizing the trajectories. The recognition
process is described in Section 4. Experimental results for
recognizing learned objects are presented in Section 4 and
finally, conclusions are drawn in Section 5.

2 Object Tracking

The idea behind tracking for object recognition is to fol-
low the motion of an object to learn all sides and select
the best representations for each feature independent of the
view at which it is detected. The tracking process incor-
porates the notion of Maximally Stable Extremal Regions
(MSER) Tracking [1], which enables efficient and accurate
tracking by using information from previous frames to re-
duce the search space in consecutive frames. The tracking
step is the process of finding a new extremal region which
best fits the previously tracked MSER. A vector consisting
of its size, center of mass, stability and intensity range is
used to determine the best match which is then used as next
MSER in subsequent images.
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Figure 1: The system consists of five steps: (A) Tracking, (B)
Extraction of trajectories, (C) Frontal MSER selection, (D) SIFT
description and (E) either learning or recognition by means of a
vocabulary tree.

The MSER tracking notion as described by [1] ensures
robust tracking of all MSERs identified in the initial im-
age by considering all similar extremal regions of an im-
age as tracked representations. Additionally, there are three
speedups which are proposed to allow faster tracking. First,
only one type of detection — either MSER- or MSER+ — is
performed. Second, only an adapted part of the analysis is
performed through limiting the gray value range of the im-
age. Each MSER which represents an extremal region is
attributed two specific gray values defined by the brightest
and darkest pixel included in its region. And finally, the
search area within the image for matching possible extremal
regions is reduced significantly by looking in a location near
its predecessor.

The benefit of tracking is the accurate matching between
consecutive frames which again is used to construct trajec-
tories. A trajectory is a set of features tracked over time.
The wealth of information due to the tracking is later used
to build a compact object representation.

2.1 Compound MSER Tracking

Since a single MSER is not sufficient for good recognition,
multiple MSERs are considered using an extension denoted
as compound MSER tracking. This method provides signif-
icant advantages over the previously known single MSER
tracking and color MSER tracking [2]. These methods fail
on highly inhomogeneous objects since these are not always
robustly detected. The resulting match is considered unsta-

ble and results in an incorrect segmentation and unwanted
analysis of the background.

The novel compound MSER tracking is suitable for track-
ing multiple MSERSs simultaneously and is illustrated in Fig-
ure 2. This method detects and matches multiple smaller
MSERs directly. It is an extension of the single MSER track-
ing to a compound analysis. Each tracked MSER is only
analyzed in an image region around its previous center of
mass and a range in gray value intensities both tightly re-
stricted by its predecessor. This provides the full benefits
since it speeds up the detection, increases the accuracy of
the matching process, and third, only analyzes the image re-
gions of interest.

The bounding box of the individually tracked MSERSs is
combined to a global bounding box which is then used for
segmentation and restriction for the further robust tracking.
Further robustness is achieved through evaluation of the be-
havior in motion and properties of the tracked MSERs.
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Figure 2: In compound MSER tracking individually detected
MSERs (a) and their bounding boxes are combined a global bound-
ing box (b) which is used as a restriction for next tracking steps and
redetections (c).

2.2 Stable Matching and Redetection

First, a first-order motion model is used to derive a specific
direction of motion. The image region is restricted to a re-
gion of interest (ROI) of the previous stable match given by
its bounding box. This ROI is extended in only the direc-
tion of the detected motion. This provides a closer search
region inside the image space than a non-directional exten-
sion. As consequence less neighboring MSERSs are incor-
rectly matched and confused with one another.

Second, after the best available match is determined
through comparing the vector of MSER properties by an Eu-
clidean distance, the stability of the new MSER is evaluated.
A threshold is applied to verify that its stability value — the
relative change in size — is sufficiently small for stable track-
ing. If the minimally required stability is not reached, the
previous MSER is reused instead of the new unstable one.
However, if only unstable or no best matches at all could
be found for a number of times, the MSER is dropped from
tracking and its trajectory ends. The measure used is a ro-
bustness counter which is increased each time the stability is
insufficient. It is decreased when the matching result is sta-
ble enough. This mechanism allows for small repairs during
tracking. Figure 3 gives an overview of the length of trajec-
tories and the effects of repairing. To minimize the effect of
various motions and their frame rates it shows the frequen-
cies of track length on average for several sequences. When
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Figure 3: Comparison of the track length frequencies: The robust-
ness limit is set to various values showing its effect on repairing
trajectories by accepting unstable matches which would otherwise
terminate trajectories immediately (no repair). The robustness limit
evaluates the changes in tracking stability. Trajectories are longer
when this limit is set to a higher value by repairing unstable periods
during tracking. Please note, for better comparison the maximum
frequency shown is 50 whereas no repair results in initial frequen-
cies up to 1000 but quickly drops to 50, as shown here.

no robustness limit is applied there is a large number of tra-
jectories each with very short track lengths. This means no
repair is performed and the tracking fails to robustly match
MSERs over longer periods of time. A selection of increas-
ing limits in Figure 3 shows the respective increase in track
lengths.

A high robustness limit repairs more trajectories but also
allows tracked MSERs to remain instable for a long time.
Due to a limited number of concurrently tracked MSER, a
prolonged tracking of unstable MSERs prevents the detec-
tion of new MSERs. This deteriorates the information col-
lected through the trajectory and the learning quality.

The third step is a further evaluation on the behavior of
the trajectories. The aim is to quickly terminate trajectories
when the tracked MSER has suddenly become very unstable
while still maintaining a good stability value, i.e. a small
change in relative size. This step thus includes a set of rules
evaluated frame by frame. These include maximum limits
on absolute size, relative size increase, a change in location,
as well as a check for duplicates.

Due to the frequent termination due to lost stable matches
the number of active trajectories decreases steadily. A full
frame redetection is costly in terms of computation time and
does not take into account that the object has been tracked
so far. Therefore, we use the bounding box of the currently
stable MSERs to provide a ROI for new detections. Once
the total number of tracked MSERs is low, a redetection is
performed only on the reduced image space. The threshold
of active trajectories is set to a balance between retrieving
new features frequently and an acceptable processing time.

Additionally, a novel solution to merging currently ac-
tive trajectories with new detections is proposed. It is effi-
ciently solved by ignoring the active trajectories during the
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detection. The process involves removing the shapes of the
current MSERs by ignoring their pixels during the analy-
sis for new MSERs. Figure 4 illustrates this process and
its steps. First, the image is cropped to the bounding box
of interest. Second, the previous MSERs as shown in b)
are subtracted from the image resulting in a reduced image
such as c). Third, the reduced area is analyzed for MSERs.
The combination of any new detection d) is guaranteed to be
non-overlapping e) with the previous MSERs.

Thus a time-consuming comparison and merge algorithm
was replaced by a further reduction of search space. This
speedup also provides less duplicate detections and ensures
that other previously uncovered regions of an object are also
analyzed for new features frequently.

multivitamin
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Figure 4: Illustration of new detection: (a) Input image, the previ-
ously tracked MSERs (b) are removed from the input to a reduced
image (c), newly detected MSERs (d) are thus guaranteed non-
overlapping and efficiently merge (e) with the previously tracked
MSERSs.

3 Object Representation

Tracking provides trajectories which describe the motion
and appearance of each MSER on the object. This infor-
mation is used to build a robust and compact object repre-
sentation. The online learning and recognition requires a
representation to be repeatable and compact.

The information acquired through tracking is enormous
and redundant. Every trajectory contains every MSER
tracked through the length of its active trajectory. Refer to
Figure 3, the number of trajectories is about 540 and the to-
tal number of tracked MSERs is roughly 12400. The goal of
the object representation is to reduce this wealth of informa-
tion and provide a robust and compact subset.

First, the trajectories are evaluated to select a set of robust
trajectories. Second, each robust trajectory is summarized to
a single representative denoted as frontal MSER. The SIFT
descriptor [5] is used to describe this final subset of frontal
MSERs. The resulting descriptors make up the robust and
compact object representation which sufficiently distinctive
to apply it for online learning and recognition.

3.1 Robust Trajectories

Tracking provides an ongoing evaluation of the trajectories
and ensures that only stable trajectories are pursuit. Due
to online performance tracking only contains a few features
simultaneously. If no evaluation is present, the tracker is
quickly trapped with instable trajectories and is not able to
track new MSERs. Thus it is a requirement of the tracker
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itself to perform an evaluation which is also used as robust
selection for object representation.

The final robust subset is selected based on the quality of
the trajectory. The quality is measured by

lity — stable matches 1
quanty = tracking length M
where the number of successful and accurate matches is
divided though the tracking length for normalization. A
threshold for this quality value is set and a second threshold
for the minimum track length is used to determine a robust
subset.

3.2 Compact Representation

The next step involves finding a suitable summarization for
a trajectory. In a single image system there exists only indi-
vidual features without trajectories. The benefit of tracking
and building trajectories is to collect more information about
the features detected on an object. The information is then
used to find a meaningful compact representation of the en-
tire trajectory.

Previous work [3, 4] used the relative change of a de-
scriptor to detect the best representation within a trajectory.
For a controlled rotation the minimum can be detected by a
quadratic fit ignoring outliers, whereas for an arbitrary rota-
tion or generally any uncontrolled movement the minimum
is harder to detect.

Since we are using MSERs as feature detector more in-
formation than just position and orientation of a SIFT de-
scriptor is available. An MSER has an arbitrary shape which
reflects the perspective distortion in which it is viewed. The
most suitable view for a compact representation is described
by [3] as the one which is parallel to the viewing plane. The
feature — in our case the MSER — does undergo perspective
distortion and if viewed at an angle the distortion decreases
the size of the MSER. This property is used to select the
frontal MSER, i. e. the MSER providing the frontal view.

Figure 5a shows a graph of one exemplary trajectory and
its evolution in size over track length. For this trajectory the
maximum is clearly detectable, as indicated by the circle.
This selection is used to identify the frontal MSER. In Fig-
ure 5b the evolution of a subset of a trajectory is shown. This
illustration supports the choice of the MSER with the max-
imum size as suitable representation for its trajectory. The
increase in size reduces not only the perspective distortions
but also improves the quality of the underlying image data.
As is seen the tracking delivers a larger more clearly recog-
nizable Rauch logo which is used as summarization for this
trajectory.

To complete the object representation the selected frontal
MSERs are normalized [10, 11] to achieve affine invariance,
which has less importance now that the least perspectively
distorted view is chosen. Finally SIFT descriptors [5] pro-
vide repeatable and distinctive vectors of feature descrip-
tions.

4 Object Recognition

At this stage an object and its trajectory have been tracked
and a distinctive object representation exists. The SIFT de-
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Figure 5: This figure shows in (a) the evolution of size of an MSER
over the course of its trajectory. In (b) a subset of the about 200
frames long trajectory is shown.

scriptors are used to learn and identify the object. The recog-
nition requires that the descriptors are compared to all other
object representations and provides a distinguishing vote for
the desired object.

For this purpose the vocabulary tree by Nistér and
Stewénius [9] is used to store and retrieve the descriptions
and object information. This method is based on a tree
data structure which borrows ideas from text retrieval
systems. The two main benefits of the hierarchical structure
are the minimal computation requirements for inserting
new objects and matching unknown objects against the
entire vocabulary tree. Second, the number of objects
stored in the data structure does not affect the recognition
time significantly. Thus the same approach is ready to be
extended to a much larger learning and recognition system
with possibly thousands of objects.

The vocabulary tree is an efficient representation of the
clustering of SIFT descriptors. The approach uses k-means
clustering for each level of the tree. This achieves a hierar-
chy of clusters which again is used to efficiently traverse the
vocabulary tree and find matching cluster centers, referred
to as nodes.

Each node contains an inverted file list which is an index
to the objects whose descriptors are included in this node.
Further each node contains a weight based on entropy. The
more objects are included in a node the less distinctive it be-
comes. Nistér and Stewénius define various voting strategies
for retrieval. A flat strategy considers only the leaf level for
scoring. In the hierarchical strategies the scoring is based
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on how many levels upwards from the leaf level are also
considered during scoring. The flat strategy is fast while the
second improves the recognition rate significantly.

The final score is determined by the sum over all weights
of nodes where the query descriptors matches. The fre-
quency of matches for each descriptor is used and normal-
ized by the total number of descriptors — for the query object
and the already known objects in the vocabulary tree.

4.1 Online Insertion

The hierarchical design of the vocabulary tree allows for a
fast insertion of new objects. For each of its descriptors the
top nodes and their cluster centers are matched. Only the
children of the best matched cluster center are then matched
again. This reduction of search space allows for a complete
search of the vocabulary in k£ x [ comparisons. During the
insertion of a new object this advantage is used to find the
best matching leaf node quickly. For each of the descrip-
tors such a match is sought. Then, a new object identifier
is included into the nodes’ inverted file list and its weight is
updated. No further steps are required.

For the learning step the object is tracked and its trajecto-
ries are recorded. Frontal MSER selection and the evaluation
of the tracking quality during the tracking provide robust and
compact trajectories. The affine normalization and SIFT de-
scriptors are created and then inserted into the vocabulary
tree as a new object.

4.2 Online Retrieval

The same hierarchical matching is used to determine the best
matching nodes for retrieval. Due to the lower computa-
tional expense only flat scoring is used and no levels other
than the leaf nodes are considered for scoring. The result
of the retrieval is a list of objects which matched the query
object in respect to the nodes the objects share. If a query
object matches a node, all objects in its inverted file are pos-
sible retrieval matches and are considered. The list of ob-
jects contains the final score over all matched nodes using
all descriptors.

In the recognition task the object is equally tracked and
robust trajectories are summarized to frontal MSERs. How-
ever, multiple recognition steps are performed at certain in-
tervals. Depending on the required response rate these in-
tervals may range from once per frame to every 20th frame.
The recognition matches their SIFT descriptors against the
learned objects contained in the vocabulary tree.

4.3 Confidence Measurement

The final step of the recognition system evaluates the score
retrieved through the vocabulary tree. The score provides a
measure how many nodes and descriptors are successfully
matched for each considered object. While a simple max-
imum score selection is the straightforward approach, it is
not useful in this case.

Due to the tracking the more information is learned the
longer an object is tracked. Initially only a few features are
tracked and described. Thus the retrieved score is based on
a small number of features. The two benefits of tracking
now show their effect in score. First, the longer the tracking
the better the selected frontal MSER. Second, the longer the
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tracking the more features are visible and detected.

The idea is to create a confidence measure which evalu-
ates how stable and accurate the recognition of the top score
is. The proposed measure is defined as

highest score

(@)

confidence = second highest score’

This distance ratio determines how similar the top two
scores are. If there is enough distance between these the
recognition is likely to be correct. To determine such a
threshold the experiments includes a setup where this confi-
dence is evaluated. In this case the highest score is taken to
be correct score.

5 Evaluation

In this section experimental evaluations demonstrate the
capabilities of our system for recognizing objects learned
through trajectories. Each of the test objects has been
tracked, summarized, described and inserted into a vocab-
ulary tree clustered and filled with a subset of the UK Bench
image database [9] as described later on. The evaluation
framework is part of the complete online learning and recog-
nition system and is briefly described. The experiments con-
sist of three sub-experiments. First, the recognition perfor-
mance of the trajectory tracking is compared to a single view
full frame test scene and a ROI of the test scene. Second, the
increase of the recognition score during the tracking is eval-
uated to derive a threshold for the confidence measure. Fi-
nally, the confidence decision is evaluated on the test scenes.

The robust learning and recognition system is used in an
offline fashion to ensure repeatability. The processes re-
main the same except for the image source which is provided
through pre-recorded video files. For each task a video of an
unknown object is presented together with an initialization
ROI around the object. During the course of the experiment
the same videos with the identical bounding boxes are used
for each type of experiment.

For the learning step the object shown by the video is
tracked and summarized. In the recognition task the entire
video is equally analyzed, however at certain intervals the
recognition step is performed. This confidence measure de-
termines the certainty of the recognition result.

5.1 Training and Testing Data

The set of videos used for learning and recognition show five
different objects. Figure 6 shows the first frames of several
sequences for the five objects.

Each of the objects has a range of unique visual features,
however at the same time the objects share similar aspects
such as letters, symbols and shapes. All objects contain text
on their surfaces and some objects share the same letters in
a similar font. Figure 6 also illustrates the range of viewing
and lighting conditions. In each sequence the object under-
goes motion in an arbitrary way including a combination
of rotation around the y-axis and in-plane, translation and
shearing. Scaling is intentionally avoided to ensure the con-
cept of proper frontal MSER selection. Thus the motion is
performed at a similar distance from the camera position.
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Figure 6: This is an overview of the five different objects used for
the experiments and a subset of the 34 videos used for evaluation.
Each time the first frame is shown indicating the various viewing
conditions.

Due to the focus on evaluating the combination of track-
ing and trajectories only few objects are investigated. A data
structure such as vocabulary tree however is designed for a
larger number of objects. To approximate more realistic test
conditions the vocabulary tree is filled with random objects
from the UK Bench [9] database. In total 100 images are
used which corresponds to 25 objects at four different view-
points each. This does not provide an optimal setup. How-
ever, the focus is set on evaluation of the trajectories and
not the size of the database. The vocabulary tree structure is
build for nine clusters and four levels. Using the flat scoring
strategy an average top score of 3.54 is achieved which is
similar to results by Nistér and Stewénius [9].

5.2 Experiment 1 - Recognition Methods

This experiment evaluates the recognition performance
comparing the results obtained by tracking objects to single
frame recognition. Each of the test objects has been tracked,
summarized, described and inserted into the vocabulary
tree.

The recognition rate is evaluated in five setups where the
only difference is the method of feature extraction. First,
the same tracking and trajectory summarization is used to
extract the features. Second, a full frame where the object
is shown in its dominant frontal position is analyzed for fea-
tures. Third, the same frame is cropped to a ROI around the
object of interest. Fourth, a non-frontal view of the object is
used for a full frame feature extraction. And fifth, again the
ROI around the object in this non-frontal view is used.

The comparison of full frame to a cropped ROI has the
main intend to provide an equal basis to the tracking ap-
proach, since both of these are initialized with a bounding
box roughly separating the object from its background.

Table 1 shows the results of this experiment. The recog-
nition rate is determined by the relative number of correctly
identified objects as best match. The columns from left

Objects Tracking Frontal | Non-Frontal
Full | 100th | Scene Scene
Eistee 100% | 83% 100% 25%
Geback 100% | 100% | 50% 0%
Happyday | 86% | 83% 75% 0%
Pringles 100% | 100% 0% 50%
Snack 100% | 57% 100% 100%
Total \ 97% \ 83% \ 69% \ 42% \

Table 1: A comparison of tracking against single frame recogni-
tion. The percent of correct recognition is shown for the full video,
after the 100th frame (object motion starts after 30 frames), and for
a frame of a frontal view and a non-frontal view of the object.

to right represent the results for tracking through an entire
video of roughly 300 frames and the recognition rate after
the 100th frames). The next two columns show the perfor-
mance for the frontal or non-frontal views provided by sin-
gle images. Full frame and bounding box results are com-
bined in this table since the recognition rate is identical for
both.

The advantage of the object tracking is clearly shown.
The analysis of frontal views shows that enough information
is available to match 69% of the test scenes. Since learning
only uses the frontal MSERs to create an object representa-
tion, the frontal view of an object provides a clear view of
these MSERs without tracking. However, features on other
sides are hidden which explain the lower recognition rate
than for the tracking. Similar holds true for the non-frontal
views. Here the perspective distortion is too large to be accu-
rately modelled by affine transformation to provide similar
visual representations and descriptions as learned by track-
ing. Less than half of the scenes are detected correctly.

5.3 Experiment 2 - Recognition over Time

In this experiment the progress of the recognition score is
investigated in terms of time. The expected result is that the
longer an object is learned, the better its recognition score
will be.

The goal of a robust online learning and recognition sys-
tem is the ability to cope with arbitrary motion of the ob-
ject. To reflect this situation the video sequences have been
recorded in a similar fashion. The following sections pro-
vide an overview of two main motions and an analysis of
their recognition score over time.
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Figure 7: Pure Frontal Rotation Motion: Selected frames of the
video sequence showing the rotation. Around frame 200 the object
is presented at its dominant frontal view.

5.3.1 Pure Frontal Rotation Motion In the sequence il-
lustrated in Figure 7 there exists only a rotation of the object
from a non-frontal to a frontal and again to a non-frontal
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view. The evolution of the recognition score is shown in
Figure 8 a). The general course of the score is as expected
and the final score is more than twice that of the second best
score.

There are several interesting parts in Figure 8 a). First,
the spike at frame 100 and the subsequent drop to a much
lower score. This is explained through Figure 8 b) which
shows the evolution of the size of the tracked MSERs. For
illustration purpose only 25 trajectories with a minimum
length of 150 are drawn, which makes up roughly 15% of the
selected robust and 3% of all trajectories. At frame 70 two
trajectories arrive at their maximum size and thus frontal po-
sition, as indicated by the circle. Additionally, two more tra-
jectories commence their tracking. At frame 100 these two
new MSERs arrive at a relatively stable size. That means, at
least four new frontal MSERs are available for recognition.
This boosts the score to the new peak score.

The slight drop afterwards is due to new trajectories
which do not resemble the best frontal view but which
are taken into account when normalizing. Another aspect
may be the case when a good frontal MSER is incorrectly
matched and the new frontal MSER is no longer part of the
representation of the learned object. In Figure 8 a) this ef-
fect is seen at frame 120 when the correct score drops and
the score of another object increases suddenly.

The second interesting part of Figure 8 a) is the distri-
bution of scores of the unrelated objects. The thick lines
which are also shown in the legend are the new objects
learned through trajectory summarization. The thin lines in-
dicate the scores for UK Bench images. When the number
of robust trajectories is still low, as illustrated by the dashed
line, the few matches which occur during the vocabulary tree
matching process have a much greater influence of the score.
This explains why another object has a higher score than the
correct object up to about 100 robust trajectories. This is
also a common situation in other video sequences where the
correct recognition also receives the highest score after at
least 100 robust trajectories.

The third effect which is visible in Figure 8 a) is the clus-
tering of the UK Bench images at the lower spectrum of the
score while four out of the top ten scores belong to the newly
learned objects. The content of the two image types varies
greatly and thus provides an advantage.

5.3.2 Towards Frontal View Rotation In this experi-
ment the sequence as shown in Figure 9 starts off with a
non-frontal view and after half of the view the dominant
frontal view is shown. From the on only a slight translation
is performed.

The evolution of the score as illustrated in Figure 10 re-
flects this motion. The initial view does not provide good
MSERSs for recognizing this object. The score behaves simi-
larly to the preloaded UK Bench objects while other learned
objects receive a slightly higher score. Starting with the de-
tection of MSERs from the frontal view the score steadily
increases up to a stable level.

5.4 Experiment 3 - Confidence

In this third experiment the influence of the tracking length
on the recognition is analyzed. This is done by evaluat-
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Figure 8: Pure Frontal Rotation Motion: a) The recognition score
and b) the size of the tracked MSER both in relation to the frames.
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Figure 9: Towards Frontal View Rotation: Selected frames of the
video sequence showing the initial view and the rotation towards
the dominant frontal view around frame 150.

ing the confidence measure introduced in Section 4.3 for
all video sequences. Figure 11 shows a graph of the con-
fidence along with the minimum confidence value for cor-
rect recognition as indicated by the thick dotted line. The
analyzed confidence value indicates how much higher the
correct score is with respect to the second highest score. If
the confidence falls below the dotted line, the recognition is
incorrect because another object has a higher score.

Except for five sequences the confidence is already above
the minimum for a correct recognition. The final of the
five sequence achieves the confidence level after about 150
frames. It is the same as used in Section 5.3.2 where the
initial score is very low. Thus for the online use a minimum
confidence of 1.2 and minimum score of ten is applied.

Many other confidence measures are available and
it would be valuable and interesting to derive a second
measure evaluating how many of the robust trajectories have
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Figure 10: Towards Frontal View Rotation: The recognition score
with the dominant frontal view around frame 180.
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Figure 11: This graph shows the confidence measure applied to the
video sequences, for better viewing only a representative subset is
drawn. The thick dotted lines indicates the minimum confidence
for a correct detection.

reached their globally optimal frontal MSER. However,
other measures are not required as this method provides the
necessary decision power to create a robust online learning
and recognition system.

6 Conclusion

This paper proposed an online robust learning and recogni-
tion system which uses tracking to improve the recognition
performance. The approach is able to perform all tasks re-
lated to learning and recognizing objects in an online man-
ner. The significant gain in performance was demonstrated
in the experiments. The online processing is possible due
to the novel concepts of compound MSER tracking, robust
trajectory selection and most importantly the efficient and
optimal summarization into frontal MSERs.

The introduced system can be improved by combining
both types of MSER detection into the tracking process.
Also the notion of additional representatives [14] may be
used for better representation of large changes in the evo-
lution of a trajectory’s appearance. The next steps however
will be a combination of multiple MSER tracking methods
to provide a better shape segmentation or construction of 3D
models.
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