
Linked Edges as Stable Region Boundaries∗

Michael Donoser, Hayko Riemenschneider and Horst Bischof
Institute for Computer Graphics and Vision

Graz University of Technology, Austria
(donoser, hayko, bischof)@icg.tugraz.at

Abstract

Many of the recently popular shape based category
recognition methods require stable, connected and labeled
edges as input. This paper introduces a novel method to find
the most stable region boundaries in grayscale images for
this purpose. In contrast to common edge detection algo-
rithms as Canny, which only analyze local discontinuities
in image brightness, our method integrates mid-level infor-
mation by analyzing regions that support the local gradient
magnitudes. We use a component tree where every node
contains a single connected region obtained from thresh-
olding the gradient magnitude image. Edges in the tree are
defined by an inclusion relationship between nested regions
in different levels of the tree. Region boundaries which are
similar in shape (i. e. have a low chamfer distance) across
several levels of the tree are included in the final result.
Since the component tree can be calculated in quasi-linear
time and chamfer matching between nodes in the compo-
nent tree is reduced to analysis of the distance transforma-
tion, results are obtained in an efficient manner. The pro-
posed detection algorithm labels all identified edges during
calculation, thus avoiding the cumbersome post-processing
of connecting and labeling edge responses. We evaluate
our method on two reference data sets and demonstrate im-
proved performance for shape prototype based localization
of objects in images.

1. Introduction
Object category recognition is a challenging and well in-

vestigated topic. Despite the tremendous progress in this
field it is still not clear what the main features are that help
us to group objects into categories. Recently, shape based
recognition frameworks became quite popular, since for a
wide variety of object categories shape matters more than

∗This work was supported by the Austrian Research Promotion Agency
(FFG) project FIT-IT CityFit (815971/14472-GLE/ROD) and the Austrian
Science Fund (FWF) under the doctoral program Confluence of Vision and
Graphics W1209.

local appearance. Shape is in general a quite powerful fea-
ture since an object contour is invariant to extreme lighting
conditions and large variations in texture or color and addi-
tionally allows delineating accurate object outlines.

Different authors like [11, 6, 17, 18] achieved state-of-
the-art results outperforming appearance based approaches
for several object categories. All these methods implic-
itly require stable, connected and labeled edges in the im-
age as underlying representation, which has the main pur-
pose of reducing the data amount while retaining the impor-
tant information about the image content. Most approaches
rely on a post-processed Canny [3] or Berkeley edge detec-
tion [12] result, which are considered as state of the art in
this field. Post-processing is necessary because most de-
tection frameworks require labeled lists of connected edges
in images, which are obtained by analyzing T-junctions, by
building multiple edge branches or even by forming com-
plex contour groups [7].

In general, edge detection is one of the most intensively
studied problems in computer vision and has many other
applications like stereo matching, segmentation, 3D recon-
struction or tracking. Methods can be divided into ap-
proaches which simply analyze local intensity differences
and the recently popular group of learning based methods,
which focus on learning the appearance of edges, e. g. for
specific tasks [5] or in a more general way for natural im-
ages [10, 12]. Of course, learning based edge detection
methods provide improved results making use of training
images. However, these methods have the main drawback
of high computation time, for example in the range of 12
seconds [5] and 90 seconds [20]. Even a highly optimized
implementation for GPUs using 30 cores still requires about
2 seconds per image [4]. Furthermore, they require ground
truth to learn application specific detectors. Therefore, lo-
cal edge detectors are still of high interest because of their
computational simplicity.

In this paper we introduce a novel edge detection
method, designed for the application of object detection,
which extends purely local edge detectors by additionally
analyzing mid-level cues, i. e. regions that support the lo-

1

cal gradient magnitude are analyzed to extract the most sta-
ble edges. Detection is based on analyzing a hierarchical
data structure denoted as component tree where connected
regions, which are separated by high gradient magnitudes
along their boundaries, are linked in a tree structure. Find-
ing the most stable edges in the tree, by considering shape
similarity of the region contours, removes noise and clutter
and preserves the important edges for detection. Further-
more, our method automatically labels all obtained edges
during calculation. Therefore, no further post-processing is
required and the results can be directly passed to any of the
available shape based object localization methods.

The outline of the paper is as follows. Section 2 gives
an overview on related work concerning edge detectors and
outlines similarities of our method to recent state of the art.
Section 3 describes our novel edge detection method in de-
tail. In Section 4 we demonstrate on two well known ob-
ject recognition data sets that the proposed method reduces
clutter and maintains the most important edge responses.
We furthermore outline a potential application in the area
of object localization by using our edge responses in an ori-
ented chamfer matching step. Finally, Section 5 discusses
our results and gives an outlook on future work in this area.

2. Related work
The most commonly used edge detection method is

Canny [3] because of its simplicity, effectiveness and high
efficiency. Canny detects edges in the image by several con-
secutive steps. First, Gaussian blurring is applied to reduce
the noise of individual pixels. Second, 2D Gaussian deriva-
tive responses are calculated to detect regions of sharp in-
tensity changes. The magnitude and the orientation of the
gradient at each pixel are calculated. The gradient image
undergoes a non-maxima suppression to filter out weaker
responses. Finally, a connected component analysis based
on a hysteresis thresholding heuristic returns the set of final
edges. The main problem of Canny is its sensitivity to the
manually chosen thresholds.

The Berkeley edge detector [12] is a supervised algo-
rithm usually tuned to natural scenes and is considered as
state of the art in this field. It is based on analyzing several
image features like raw and oriented energy and texture gra-
dients. These image features are then combined to improve
edge detection of natural images. For feature combination,
supervised learning is used which exploits a ground truth
data set built from multiple human segmentations, where
humans were asked to draw boundaries of equally impor-
tant things in the training images. This ground truth is used
in a logistic regression model to learn an optimal combina-
tion of the image features and to tune the detector to natural
images.

Our method exploits a hierarchical data structure de-
noted as component tree to obtain stable edge detection re-

sults. Building and analyzing such a hierarchy of nested
regions for edge detection is not a novel idea. The two most
related methods were proposed by Najman and Schmitt [15]
and Arbalaez [1].

In [15] the dynamics of watershed contours were used to
define edge maps. The method is based on identifying wa-
tersheds by a standard flooding process. Starting from local
minima in the gradient magnitudes, the image is flooded
and when flooded regions merge, the watershed height de-
fines the saliency of the local contour. In contrast to our
approach, edge saliency is defined as the minimal contrast
between two merged regions along their common boundary
and stability analysis of the obtained edges is neglected.

Our detector is in a similar spirit to the boundary extrac-
tion method proposed by Arbalaez [1]. Arbalaez also builds
a hierarchical data structure using a stratification index and
outlines its equivalence to an ultra-metric distance between
regions. The data structure is denoted as ultrametric con-
tour map, where each level provides a segmentation of the
image at various levels of detail. They exploit the concept
of strong causality to provide a saliency value for each seg-
ment contour which allows to additionally return boundary
extraction results. Contrary to our approach, color infor-
mation is exploited in terms of a contrast function and a
color uniformity measure per segment. Furthermore an im-
age pre-segmentation by means of a Voronoi tessellation is
required which increases computational complexity.

3. Component tree edge detection

Our novel edge detection and labeling method is based
on three consecutive steps. First, similar to most edge detec-
tion algorithms we apply some basic pre-processing steps
which are outlined in Section 3.1. The output of this first
step is a normalized gradient magnitude image. The second
step is to build a hierarchical data structure named compo-
nent tree which is a unique representation of the obtained
gradient magnitude image. The definition of the component
tree and its efficient calculation is presented in Section 3.2.
Finally, for detecting the most stable edges, we analyze the
component tree by comparing the shape of regions at differ-
ent levels using a simple partial shape matching method. In
such a way we are able to measure the boundary stability of
every region and to return the most stable ones in an auto-
matically labeled manner as our final edge detection result
which is explained in Section 3.3.

3.1. Pre-processing

As a first step we obtain a gradient magnitude image
which is used as input to the component tree analysis out-
lined in Section 3.2. Please note, that we can use any gradi-
ent map for our stable edge detection method as e. g. the gra-
dient responses obtained by the Berkeley detector [12]. But

due to its simplicity and much lower computational com-
plexity we stick to simple Gaussian derivatives.

In general image derivatives emphasize high frequencies
and thus amplify noise. Therefore, it is required to smooth
the image with a low-pass filter prior to gradient calcula-
tion using a circularly symmetric filter, since edge responses
should be independent of orientation. We use the same se-
quence of pre-processing steps as Canny. We first convolve
the image with a 2D Gaussian to remove noise and then ap-
ply a first order 2D Gaussian derivative filter. Since Gaus-
sian filtering is separable we can use two 1D convolutions
in order to achieve the effect of convolving with a 2D Gaus-
sian. As a result we obtain gradient magnitudes and orien-
tations per pixel. We neglect orientation information in the
following steps and simply use the obtained gradient mag-
nitude map I . The component tree as described in the next
section requires pixel values coming from a totally ordered
set as input. Therefore, we further have to normalize the
magnitudes and to scale them to an integer range.

3.2. Component tree

For detection and labeling of stable edges in an image
we build a unique data structure denoted as component tree
for the obtained gradient magnitude image. The component
tree was originally introduced in statistics for classification
and clustering and was redefined by Jones [9] for the field
of image analysis as a ”representation of a gray-level image
that contains information about each image component and
the links that exist between components at sequential gray-
levels in the image”.

The component tree can be built for any vertex-weighted
graph defined by a triplet G = (V,E, I). V is a finite
set of vertices, i. e. the set of pixels from our image with
V being a subset of Z2. Therefore a vertex x ∈ V in
our case is defined by its two coordinates (x1, x2). E
is the set of edges defining the neighborhood relation of
the graph, where Γ is a map from a x ∈ V to a sub-
set of V , such that for every pixel x ∈ V , Γ (x) =
{y ∈ V | (x, y) ∈ E}. If a pixel y ∈ Γ (x), we say that
y is a neighbor of x. In our image setting, the neighborhood
relation is defined by the standard 4 pixel neighborhood as
E = {(x, y) ∈ V × V, |x1 − y1|+ |x2 − y2| = 1}. I is a
map from V to D, where D is any finite set allowing to or-
der all points, e.g. a finite subset of integers. In our case,
D = {0, 1, . . . , 255} and the mapping I is defined by the
normalized gradient magnitudes that are scaled up to an un-
signed 8-bit integer range. The magnitude values I are in-
verted so that a low value represents a high gradient value.

A cross section of the vertex weighted graph at a level t
is defined as It = {x ∈ V | I (x) ≥ t}. Each possible cross
section It is a standard non-weighted graph defined by a
tuple Gt = (V,E), where E is a binary relation on V being
anti-reflexive (x, x) /∈ E and symmetric (x, y) ∈ E ⇔

(y, x) ∈ E. E for a cross section It connects neighboring
pixels (x, y) only if I (x) ≥ t and I (y) ≥ t.

We further define linkage between two vertices x and y,
if there is a path P = (p0, p1, . . . , pN) with pi ∈ V between
x and y so that for every pixel along the path (pi, pi+1) ∈ E
is valid. We denote a subset X ⊆ V as connected, if any
x, y ∈ X are linked. A connected component C is defined
as a maximal subset C ⊆ V , where it is not possible to add
another pixel z ∈ V which is linked to any x ∈ C of the
component.

These definitions now allow to define the compo-
nent tree. We first find the minimum level tmin =
min {I (x) |x ∈ V } and the maximum level tmax =
max {I (x) |x ∈ V }. We then calculate all cross sections
It of the vertex-weighted graph in the range of tmin to tmax

and find in each cross section It the connected components
Ct as defined above to build the component tree structure
from the top to the bottom. The obtained connected com-
ponents Ct can be organized in a hierarchical data structure
denoted as component tree because they are nested and their
inclusion relationship is defined by ∀x ∈ Ct , ∃y ∈ Ct+1 :
x = y. Therefore, region size can only decrease from the
top to the bottom of the component tree and the root node
contains all components merged into a complete represen-
tation of the input image. Please note, that in contrast to
the hierarchical structure defined in [1] the localization of
the contours is not preserved through different levels of the
tree, because we start from a single pixel instead of a super
pixel representation.

The component tree can be implemented in many effi-
cient ways. We use the method proposed by Najman and
Couprie [14] since it has the lowest computational com-
plexity. Their algorithm runs in quasi-linear time, where
the term quasi is an amortization of the costs required for
the union-find problem. Thus, the worst-case complexity
is O(N × α(N)) with α(N) being the inverse Ackermann
function, i. e. practically linear. Please note, that the compo-
nent tree is also the basis for the calculation of Maximally
Stable Extremal Regions (MSERs) [13]. Recently Nistér
and Stewénius [16] even showed that calculating MSERs is
possible in linear time returning an ellipse instead of a pixel
representation for each region.

To sum up, the component tree is a unique representa-
tion encoding the gradient magnitude structure of the input
image as it is illustrated in Figure 1. As can be seen regions
within the cross sections of the component tree correspond
to connected areas in the image separated by high gradi-
ent magnitude values along their boundaries, related to the
concept of watershed segmentation. Every node of the tree
contains data about the corresponding outer region bound-
aries, the tree level and the hierarchical relations to other
component tree nodes. The shape of some regions stays the
same over several levels of the tree, which is the criterion

Figure 1. Illustration of component tree representation. First row on the left shows the input image and the obtained gradient magnitude
response map (dark values equal high gradient magnitudes). Second row shows label results after thresholding the magnitude image at two
different levels. Regions correspond to connected areas separated by high gradient magnitude values along their boundaries. Cross sections
are related by inclusion relationship from left to right, i. e. regions can only become smaller. This region nesting defines the hierarchical
data structure denoted as component tree shown on the right. Outer boundaries of these regions are analyzed concerning shape similarity
over several levels of the tree to detect stable edges.

that we use to detect stable edges as it is outlined in the next
section. Furthermore, since we only want to detect stable
edges that are supported by a large adjacent region, we re-
move all regions below a fixed threshold Ω from the tree.

3.3. Stable component tree region boundaries

We now use the component tree structure, built as de-
scribed in Section 3.2, for detecting and immediately label-
ing edges in the input image. The underlying idea is quite
similar to the concept of Maximally Stable Extremal Re-
gion (MSER) detection as proposed by Matas et al. [13].
MSER detection builds the component tree directly on the
intensities of the image and returns the most stable nodes
(extremal regions) of the tree as interest region detection re-
sults. The stability is estimated by comparing region sizes
between nodes in adjacent levels of the tree.

We follow the same principle but focus on analysis of
the boundary stability between the regions. In contrast to
MSER detection which compares region sizes, we measure
how similar the shape of the regions is, i. e. if parts of the
region boundary remain more or less the same over several
levels of the component tree.

We define the stability value Ψ(Ct
i) of a connected com-

ponent Ct
i at a component tree cross section It at level t by

comparing its shape to a region Ct−∆
j , which is the con-

nected component linked to Ct
i by moving along the hierar-

chical structure up to a level t−∆ (see Figure 1), where ∆
is a stability parameter of the method. Increasing the value
∆ yields stricter stability constraints, i. e. region boundaries
have to be stable over more levels of the tree, which leads
to a reduced number of detected edges.

To measure the shape similarity between Ct
i and Ct−∆

j

and to identify similar contour parts between the regions,
we apply a simplified version of chamfer matching. Since
regions within the tree can only grow from level t to level

t − ∆ and always are fixed at the same location, chamfer
matching is reduced to an analysis of the distance transfor-
mation values. We apply the basic approach for chamfer
matching, but please note that more sophisticated methods
as e. g. chamfer matching variations additionally consid-
ering orientation or in general any partial shape matching
method can be used in this step.

Let Bi and Bj be the sequence of outer boundary pixels
for the current region Ct

i and its linked neighbor Ct−∆
j . As

a first step we calculate the distance transformation DTi on
the binary image solely containing the boundary pixels of
Bi, which assigns to each pixel the minimum distance to a
boundary point. This distance transformation DTi enables
to find partial matches between the boundaries Ci and Cj by
finding connected boundary fragments Cj ⊆ Cj fulfilling

Cj ⊆ Cj → ∀x ∈ Cj : DTi (x) ≤ Φ, (1)

where Φ is a maximum boundary distance parameter. Fi-
nally, for the region Ct

i we set the corresponding stability
value Ψ(Ct

i) to the average chamfer distance of the matched
boundary pixels Cj by

Ψ(Ct
i) =

1
N

N∑
n=1

DTi (xn) where xn ∈ Cj (2)

andN is the number of matched pixel. In such a way we get
a stability score Ψ(Ct

i) and matched connected boundary
fragments for every region in an efficient manner, since we
only have to look up corresponding distance transformation
values.

After calculating the stability values Ψ(Ct
i) for every

node in the component tree, we detect the most stable ones
similar as in MSER detection as described in [13] and re-
turn the corresponding matched boundary fragments as de-
tection result. We further assign the level in the component

tree each edge was detected as saliency value, which mea-
sures the importance of the edge, since detection at a level
t means that all gradient magnitude values of the edge have
to be bigger or equal than t. Furthermore, since every de-
tected edge is linked to a specific node in the component
tree, a unique edge ID can be assigned during component
tree analysis. Therefore, cumbersome post-processing to
connect and clean edges is not required and the final output
of our method is a labeled set of connected edges.

Please note, that edge detection results are quite different
from simply returning the boundaries of an MSER detection
result. First of all we use the gradient magnitude image
instead of the intensity image as underlying representation.
Second, we have a different stability criterion analyzing the
stability of the shape of the region contours instead of region
size stability. Finally, since we identify parts of the region
contours that are similar, the returned edges need not be
closed.

4. Experiments

The focus of experimental evaluation lies on demonstrat-
ing the reduced noise and high retrieval of valuable stable
edges. In Section 4.1 we use the Berkeley benchmark for
experimental evaluation on two well known object recog-
nition data sets. Since our proposed method returns well-
connected and stable edges, it is also well suited for shape
prototype matching methods, where a binary prototype is
shifted all over the image and similarities to the provided
prototype are calculated. Therefore, in Section 4.2 we use
our edges in an oriented chamfer matching method and il-
lustrate results in comparison to Canny and Berkeley edge
detection methods.

Our method mainly has four parameters that are fixed
for all experiments. The minimum considered region size
Ω is 400. The stability parameter ∆ is 5 and the shape sim-
ilarity parameter Φ is 10. Furthermore, after obtaining the
result we remove all edges with a length below 70 pixels,
which easily can be done because each edge can be directly
accessed by its unique ID.

4.1. Berkeley evaluation framework

As a first experiment we employ the Berkeley segmen-
tation benchmark, which allows to measure the quality of
edge maps compared to human ground truth data. We use
two well known object recognition data sets: the ETHZ
shape classes [7] and the Weizmann horses [2]. Ground
truth for both data sets is a set of figure/ground segmenta-
tions. For the ETHZ data set, we created the figure/ground
segmentations whereas for the Weizmann horses they are
provided. In both cases the segmentations highlight the
shape of the objects that should be detected in the test im-
age. For evaluation of the results respective to the defined

ground truth data, different edge detection results are com-
pared to the ground truth in the same manner as in the
Berkeley segmentation benchmark.

We use precision and recall to measure the quality of
the obtained edge responses. Precision in our case is the
probability that a detected boundary pixel is a true boundary
pixel. Recall is the probability that a true boundary pixel is
detected by the algorithm. We calculate the F-measure as a
final comparison value defined as weighted harmonic mean
of precision and recall. The Berkeley benchmark provides
exactly these precision and recall curves for each threshold
of the image. Since object recognition systems often require
binary edge detection results as input (e. g. later weighted
with the average gradient magnitude), we evaluate the pure
binary responses. We select all edges with a gradient mag-
nitude above zero and retrieve a single F-measure per test
image. By analyzing binary responses we can focus on the
actual edges returned by an edge detector, rather than on the
noisy, unimportant responses.

Table 1 summarizes results of this experiment, outlining
the calculated precision, recall and F-measures. We com-
pare results for the ETHZ shape classes and the Weizmann
horses obtained by the Canny edge detector using default
parameters, by the Berkeley edge detector and by our pro-
posed method. The improvements achieved by our stable
edge detector are encouraging for both data sets, yielding an
average F-measure improvement over all analyzed classes
of 18% compared to standard Canny and of 4% compared
to the learned Berkeley detector. We are thus able to match
the quality of the detection results of a supervised method
and the speed of a standard Canny method.

The improvements achieved by our edge detector in
these experiments demonstrate how edges become stable
when they exhibit region support. The applelogo, bottle,
swan and horse classes all contain strong region support for
the boundaries. On the other hand, giraffes due to their
strong texture deliver less stable region support, which in
turn results in a lower recall for our obtained edges.

The advantages of our algorithm are clear when look-
ing at Figure 2, which shows some examples of our stable
edge responses for the ETHZ classes. Our edge detector
produces far less noise since only stable edges are returned
which have a strong support from adjacent regions. This
removes a lot of the cluttered edges which are present in
other edge responses. Occasionally some edges are miss-
ing, which e. g. are present in the highly dense responses of
Canny. This is reflected in the lower recall of our method,
nevertheless our precision is consistently higher. In gen-
eral, the precision values are very low since our evaluation
strategy is very strict. Only boundaries of the respective ob-
ject class are marked as true boundaries, and thus any other
edge response is seen as a false positive. This is less se-
vere in the case of the Weizmann horses, since there horses

Class Canny Berkeley Our detector
P R F P R F P R F

ETHZ applelogos 0.02 0.99 0.05 0.08 0.95 0.15 0.12 0.90 0.21
ETHZ bottles 0.06 0.99 0.11 0.16 0.95 0.28 0.17 0.84 0.29
ETHZ giraffes 0.10 0.99 0.10 0.20 0.90 0.32 0.16 0.69 0.26
ETHZ mugs 0.08 0.98 0.15 0.19 0.94 0.32 0.18 0.86 0.30
ETHZ swans 0.05 0.98 0.10 0.15 0.94 0.27 0.24 0.82 0.38
Weizmann horses 0.14 0.94 0.25 0.18 0.94 0.30 0.33 0.53 0.41
Class Average 0.08 0.98 0.13 0.16 0.94 0.27 0.20 0.77 0.31

Table 1. Comparison of the overall precision, recall and F-measure performance of each algorithm for the two data sets ETHZ shape
classes [7] and Weizmann horses [2]. Please note, that the benchmark is very strict given that only boundaries of objects-of-interest
are marked in the human ground truth segmentation (resulting in a low precision value). Our edge detector provides an encouraging
improvement over the Canny (18%) and the learned Berkeley edge responses (4%).

Figure 2. Edge detection result of our proposed stable region boundary extraction method on images of ETHZ object detection data set.
Edge responses for all five classes are shown.

are the only dominant object in the images. In comparison,
the images of the ETHZ data set contain much more back-
ground information including strong edges. The second ad-
vantage of our method is the implicit labeling returned by

our approach. In contrast to the edge responses from Canny
or Berkeley, our edges are connected and uniquely labeled.
This provides another benefit, since no post-processing is
required to dissect edges from the cluttered responses, to

split them at T-junctions and to finally link them into lists.
Our edge detector directly provides these results, which
would otherwise require costly and sometimes destructive
post-processing.

4.2. Oriented chamfer matching

Some of the state-of-the-art recognition methods [19, 8,
18] implicitly rely on local shape prototype matching scores
to localize objects in an image. The most prominent method
in this area is chamfer matching, which has several exten-
sions improving results, for example by additionally con-
sidering orientation. Chamfer matching strongly relies on
well connected and undisturbed edges, where clutter has a
strong adverse effect on the results. Therefore, improving
chamfer matching performance is one potential application
area for our novel edge detector.

We evaluate the detection performance on several im-
age types for detecting categories like humans, cars or win-
dows. The corresponding shape prototypes are manually
drawn or chosen as mean shape when ground truth was
available. As matching method we use oriented chamfer
matching [18]. For comparison, we additionally evaluated
on Canny and Berkeley edge responses. Figure 3 illustrates
detected edges and voting maps returned by oriented cham-
fer matching for the three methods using a car prototype.
As can be seen our detector returns far less noise while re-
taining the most important edges for localization, which is
illustrated by the much cleaner vote maps. Figure 4 shows
further chamfer matching results for localizing humans and
windows. Again, the significantly reduced clutter and noise
in our edge detection results yields much cleaner vote maps.

5. Conclusion and outlook

This paper introduced a novel edge detection algorithm
for the purpose of shape based object localization. It is
based on the idea of analyzing a hierarchical data struc-
ture denoted as component tree containing connected re-
gions which are separated by high gradient values at dif-
ferent magnitudes. We detect the most stable edges within
the component tree, which are returned in a labeled manner
preventing cumbersome post-processing required by other
methods. The benefit of our detector is the integration of
context information in terms of support by connected re-
gions. Experimental evaluations using the Berkeley seg-
mentation benchmark on two well known object recogni-
tion data sets demonstrated the applicability of our method.
It accurately removes noise and clutter and delivers cleaner,
more precise and still rich edge responses. Future work will
focus on evaluating our detector in different object local-
ization frameworks and on investigating the benefit when
integrating color information.

References
[1] P. Arbelaez. Boundary extraction in natural images using

ultrametric contour maps. In Proceedings of Conference on
Computer Vision (CVPR), 2006.

[2] E. Borenstein and S. Ullman. Learning to segment. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), volume 3, pages 315–328, 2004.

[3] J. Canny. A computational approach to edge detection. IEEE
Transations Pattern Analysis Machine Intelligence (PAMI),
8(6):679–698, 1986.

[4] B. Catanzaro, B.-Y. Su, N. Sundaram, Y. Lee, M. Murphy,
and K. Keutzer. Efficient, high-quality image contour detec-
tion. In Proceedings of International Conference on Com-
puter Vision (ICCV), 2009.

[5] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of
edges and object boundaries. In Proceedings of the Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 1964–1971, 2006.

[6] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups
of adjacent contour segments for object detection. IEEE
Transations Pattern Analysis Machine Intelligence (PAMI),
30(1):36–51, 2008.

[7] V. Ferrari, T. Tuytelaars, and L. V. Gool. Object detection by
contour segment networks. In Proceedings of the European
Conference on Computer Vision (ECCV), volume 3, pages
14–28, 2006.

[8] D. Gavrila. Pedestrian detection from a moving vehicle. In
Proceedings of European Conference on Computer Vision
(ECCV), 2000.

[9] R. Jones. Connected filtering and segmentation using com-
ponent trees. Journal of Computer Vision and Image Under-
standing (CVIU), 75(3):215–228, 1999.

[10] S. Konishi, A. Yuille, J. Coughlan, and S. Zhu. Statistical
edge detection: learning and evaluating edge cues. IEEE
Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 25:57–74, 2003.

[11] M. Leordeanu, M. Hebert, and R. Sukthankar. Beyond local
appearance: Category recognition from pairwise interactions
of simple features. In Proceedings of Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2007.

[12] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-
ural image boundaries using local brightness, color, and tex-
ture cues. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (PAMI), 26(5):530–549, 2004.

[13] J. Matas, O. Chum, U. Martin, and T. Pajdla. Robust wide
baseline stereo from maximally stable extremal regions. In
Proceedings of British Machine Vision Conference (BMVC),
volume 1, pages 384–393, 2002.

[14] L. Najman and M. Couprie. Quasi-linear algorithm for the
component tree. In L. Latecki, D. Mount, and A. Wu, ed-
itors, IS&T/SPIE Symposium on Electronic Imaging, Vision
Geometry XII, volume 5300, pages 98–107, 2004.

[15] L. Najman and M. Schmitt. Geodesic saliency of watershed
contours and hierarchical segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 18,
1996.

Figure 3. First row shows edge detection results from Canny, Berkeley and our proposed method. Second row shows corresponding vote
maps when oriented chamfer matching is applied on edge responses using a car shape prototype (shown on the lower, right side of the
figure). As can be seen our approach yields much cleaner vote maps. Please note, that due to the natural image specific training of the
Berkeley edge detector, it does not perform well for such image types. Best viewed in color.

Figure 4. Vote maps returned by oriented chamfer matching using a window (first row) and human (second row) shape prototype (shown
on the right side of the figure). First result is always from Canny, second from Berkeley and the third from our proposed edge detector.
Best viewed in color.

[16] D. Nistér and H. Stewénius. Linear time maximally stable
extremal regions. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 183–196, 2008.

[17] A. Opelt, A. Pinz, and A. Zisserman. A boundary-fragment-
model for object detection. In Proceedings of the European
Conference on Computer Vision (ECCV), volume 2, pages
575–588, 2006.

[18] J. Shotton, A. Blake, and R. Cipolla. Contour-based learning
for object detection. In Proceedings of International Confer-

ence on Computer Vision (ICCV), pages 503–510, 2005.
[19] J. Shotton, A. Blake, and R. Cipolla. Multiscale categorical

object recognition using contour fragments. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (PAMI),
30(7):1270–1281, 2008.

[20] S. Zheng, Z. Tu, and A. Yuille. Detecting object boundaries
using low-, mid-, and high-level information. In Proceedings
of the Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2007.

