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Abstract. This paper introduces a novel efficient partial shape match-
ing method named IS-Match. We use sampled points from the silhouette
as a shape representation. The sampled points can be ordered which
in turn allows to formulate the matching step as an order-preserving as-
signment problem. We propose an angle descriptor between shape chords
combining the advantages of global and local shape description. An ef-
ficient integral image based implementation of the matching step is in-
troduced which allows detecting partial matches an order of magnitude
faster than comparable methods. We further show how the proposed al-
gorithm is used to calculate a global optimal Pareto frontier to define a
partial similarity measure between shapes. Shape retrieval experiments
on standard shape databases like MPEG-7 prove that state-of-the-art
results are achieved at reduced computational costs.

1 Introduction

Shape matching is a well investigated problem in computer vision and has ver-
satile applications as e. g. in object detection [1–3] or image retrieval [4]. The
most important part of designing a shape matcher is the choice of the shape
representation which has a significant effect on the matching step. Shapes have
for example been represented by curves [5], medial axes [6], shock structures [7]
or sampled points [8].

In general current shape matching algorithms can be divided into two main
categories: global and local approaches. Global matching methods compare the
overall shapes of the input objects by defining a global matching cost and an
optimization algorithm for finding the lowest cost match. One of the most pop-
ular methods for global shape matching is the shape context proposed by Be-
longie et al. [8]. Their algorithm uses randomly sampled points as shape repre-
sentation and is based on a robust shape descriptor – the shape context – which
allows to formulate the matching step as a correspondence problem. The shape
context is the basis for different extensions as proposed by Ling and Jacobs [9]
or Scott and Nowak [10].

While such global matching methods work well on most of the standard shape
retrieval databases, they cannot handle strong articulation, part deformations
or occlusions. For example, shape context is a global descriptor and local artic-
ulations influence the description of every sampled point. To reduce this effect



larger histogram bins are used further away from the point. Although this re-
duces the problem e. g. occlusions still lead to matching errors as it is illustrated
in Figure 1 for the shape context based COPAP framework [10].
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Fig. 1: Global shape matching methods like COPAP [10] are not able to handle occlu-
sion or strong articulation, because of internally using global descriptors. The same
similarity value for the partially occluded shape and a totally different one is returned.

These problems are handled well by purely local matching methods as e. g. pro-
posed by Chen et al. [11], which allow accurately measuring local similarity, but
in contrast fail to provide a strong global description for accurate shape align-
ment. In this work, we try to bridge the gap between the two worlds by combining
their advantages.

We propose a novel shape matching method denoted as IS-Match (Integral
Shape Match). We use sampled points along the silhouette as representation
and exploit the ordering of the points to formulate matching as order-preserving
assignment problem. We introduce a chord angle descriptor which combines local
and global information and is invariant to similarity transformations. An integral
image based matching algorithm detects partial matches with low computational
complexity. The method returns a set of partial sub-matches and therefore also
allows matching between differently articulated shapes.

The main contributions of this paper are: (1) a chord angle based descriptor
combining local and global information invariant to similarity transformations
(2) an efficient integral image based matching scheme where matching in practice
takes only a few milliseconds and (3) the calculation of a global optimal Pareto
frontier for measuring partial similarity.

The outline of the paper is as follows. Section 2 describes the partial shape
matching concept named IS-Match in detail. Section 3 presents a comprehensive
evaluation of the proposed algorithm for shape retrieval experiments on common
databases like MPEG-7. All evaluations prove that state-of-the-art results are
achieved at reduced computational costs.



2 Partial Shape Matching: IS-Match

Our shape matching algorithm named IS-Match takes two shapes as input and
returns detected partial matches and a similarity score as result. Section 2.1
describes the shape representation used, which is a sequence of points sampled
from the silhouette. Section 2.2 introduces a chord angle based descriptor invari-
ant to similarity transformations. In Section 2.3 an efficient integral image based
algorithm for matching the descriptor matrices to each other is outlined, which
allows detecting subparts of the contours that possess high similarity with low
computational complexity. Section 2.4 describes how a global optimal Pareto
frontier is calculated and the corresponding Salukawdze distance is returned as
measure for partial similarity. Finally, Section 2.5 analyzes the required compu-
tational complexity for single shape matches.

2.1 Shape Representation

The first step of our method is to represent the shapes by a sequence of points
sampled from the contour. There are two different variants for point sampling:
(a) sampling the same number of points from the contours or (b) equidistant
sampling, i. e. fixing the contour length between sampled points. The type of
sampling significantly influences the invariance properties of our method. Based
on equidistant sampling occlusions as e. g. shown in Figure 1 can be handled but
then only shapes at the same scale are correctly matched. By sampling the same
number of points our method becomes invariant to similarity transformations,
but strong occlusions cannot be handled anymore. In this paper we always use
the equidistant sampling for the task of shape retrieval on single scale data
sets. Nevertheless all subsequent parts of the method are defined in a manner
independent of the sampling type. Therefore, we can switch the sampling type
without requiring any modifications of the method. Please note that in other
applications, as e. g. shape based tracking [12] or recognizing actions by matching
to pose prototypes [13], equidistant sampling should be preferred.

Because the proposed shape matching method focuses on analyzing silhou-
ettes (as required in the areas of segmentation, detection or tracking) the sampled
points can be ordered in a sequence which is necessary for the subsequent de-
scriptor calculation and the matching step. Thus, any input shape is represented
by the sequence of points P1 . . . PN , where N is the number of sampled points.

2.2 Shape Descriptor

The descriptor constitutes the basis for matching a point Pi of the reference
shape to a point Qj of the candidate shape. We formulate the subsequent match-
ing step presented in Section 2.3 as an order-preserving assignment problem.
Therefore, the descriptor should exploit the available point ordering information.
In comparison, the shape context descriptor loses all the ordering information
due to the histogram binning and for that reason does not consider the influence
of the local neighborhood on single point matches.



We propose a descriptor inspired by chord distributions. A chord is a line
joining two points of a region boundary, and the distribution of their lengths
and angles was used as shape descriptor before, as e. g. by Cootes et al. [14]. Our
descriptor uses such chords, but instead of building distribution histograms, we
use the relative orientations between specifically chosen chords.

Our descriptor is based on angles αij which describe the relative spatial
arrangement of the sampled points. An angle αij is calculated between a chord
PiPj from a reference point Pi to another sampled point Pj and a chord PjPj−∆
from Pj to Pj−∆ by

αij = �
(
PiPj , PjPj−∆

)
, (1)

where � ( . . .) denotes the angle between the two chords and Pj−∆ is the point
that comes ∆ positions before Pj in the sequence as is illustrated in Figure 2.
Since angles are preserved by a similarity transformation, this descriptor is in-
variant to translation, rotation and scale.

Fig. 2: Our shape descriptor is based on calculating N angles for each sampled point
of the shape. In this case Pi is the reference point and the calculation of the angle αij

to the point Pj with ∆ = 3 is shown.

In the same manner N different angles αi1 . . . αiN can be calculated for one
selected reference point Pi. Additionally, each of the sampled points can be
chosen as reference point and therefore a N ×N matrix A defined as

A =

 α11 · · · α1N

...
. . .

...
αN1 · · · αNN

 (2)

can be used to redundantly describe the entire shape. Obviously, elements on
the main diagonal α11, · · · , αNN are always zero. This descriptor matrix is not
symmetric because it considers relative orientations. Please note, that such a
shape descriptor implicitly includes local information (close to the main diago-
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Fig. 3: Visualizations of distinct chord angle based shape descriptors. Bright areas in-
dicate parts of the silhouettes which significantly deviate from straight lines.

nal) and global information (further away from the diagonal). Figure 3 shows
different descriptor matrices for selected shapes.

The descriptor depends on which point is chosen as the first point of the
sequence. For example the descriptor matrix A shown before changes to

A(k) =



αkk . . . αk1 . . . αk(k−1)

...
. . .

... . . .
...

α1k . . . α11 . . . α1(k−1)

... . . .
...

. . .
...

α(k−1)k . . . α(k−1)1 . . . α(k−1)(k−1)

 (3)

if the k-th point is set as the first point of the sequence. Because only closed
boundaries are considered, these two matrices A(k) and A are directly related by
a circular shift. Matrix A can be obtained by shifting the A(k) matrix k−1 rows
up and k− 1 columns to the left. This is an important property for the efficient
descriptor matching algorithm presented in the next section.

2.3 Matching Algorithm

To find a partial match between two given shape contours R1 and R2 the corre-
sponding descriptor matrices A1 with size M ×M and A2 with size N ×N are
compared. For notational simplicity we assume that M ≤ N .

The aim of shape matching is to identify parts of the two shapes that are sim-
ilar to each other. In terms of comparing the two descriptor matrices this equals
to finding r× r sized blocks starting at the main diagonal elements A1(s, s) and
A2(m,m) of the two descriptor matrices which yield a small angular difference
value Dα(s,m, r) defined by



Dα(s,m, r) =
1
r2

r−1∑
i=0

r−1∑
j=0

[A1 (s+ i, s+ j)−A2 (m+ i,m+ j)]2 (4)

between them. This equation is valid due to the previously explained property
that a different starting point just leads to a circular shift of the descriptor
matrix as illustrated in Equation 3. To find such blocks all different matching
possibilities and chain lenghts have to be considered and the brute-force method
becomes inefficient for larger number of points. Therefore, different authors as
e. g. [15] proposed approximations where for example only every n-th point is
considered as starting point.

We propose an algorithmic optimization to overcome the limitations of the
brute-force approach, which is based on an adaption of the Summed-Area-Table
(SAT) approach to calculate all the descriptor differences Dα(s,m, r). The SAT
concept was originally proposed for texture mapping and brought back to the
computer vision community by Viola and Jones [16] as integral image. The in-
tegral image concept allows to calculate rectangle image features like the sum of
all pixel values for any scale and any location in constant time.

For calculating the similarity scores for all possible configuration triplets
{s,m, r} in the most efficient way N integral images Int1 . . . IntN each of size
M ×M are built for N descriptor difference matrices Mn

D defined by

Mn
D = A1 (1 : M, 1 : M)−A2 (n : n+M − 1, n : n+M − 1) . (5)

The difference matrices Mn
D represent the N possibilities to match the point

sequences onto each other. Based on these N integral images Int1 . . . IntN the
difference values Dα(s,m, r) can be calculated for every block of any size starting
at any point on the diagonal in constant time.

As a final result all matching triplets {s,m, r} which provide a difference
value Dα(s,m, r) below a fixed threshold are returned. Obviously, the detected
matches may overlap. Thus, the final result is obtained by merging the differ-
ent matches providing a set of connected point correspondences. This ability
of matching sub-fragments between two input shapes allows to handle articula-
tions, as it is illustrated in Figure 4, where for two scissors four different partially
matched sub-fragments are returned.

2.4 Shape Similarity

It is important to provide a reasonable similarity measure in addition to the
identified matching point sequences, e. g. for tasks like shape retrieval. Com-
monly, a combination of descriptor difference, matched shape distances like the
Procrustes distance and bending energy of an estimated transformation like a
Thin Plate Spline is used. Since we focus on partial similarity evaluation we
adapt a measure described by Bronstein et al. [17]. They proposed to use the
Pareto-framework for quantitative interpretation of partial similarity. They de-
fine two quantities: partiality λ (X ′, Y ′), which describes the length of the parts
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(c) Desc. Closed (d) Desc. Open

Fig. 4: Articulation invariance is handled by returning a set of partially matching
boundary fragments. Corresponding fragments are depicted by the same color.

(the higher the value the smaller the part) and dissimilarity ε (X ′, Y ′), which
measures the dissimilarity between the parts, where X ′ and Y ′ are two contour
parts of the shape. A pair Φ(X∗, Y ∗) = (λ (X∗, Y ∗) , ε (X∗, Y ∗)) of partiality and
dissimilarity values, fulfilling the criterion of lowest dissimilarity for the given
partiality, defines a Pareto optimum. All Pareto optimums can be visualized as
a curve, referred to as the set-valued Pareto frontier.

Since finding the Pareto frontier is a combinatorial problem in the discrete
case, mostly rough approximations are used as final distance measure. Our
matching algorithm automatically evaluates all possible matches for all possi-
ble lengths. Therefore, by focusing on the discretization defined by our point
sampling, we can calculate a global optimal Pareto frontier, by returning the
minimum descriptor difference for all partialities.

Finally, to get a single partial similarity value, the so-called Salukwadze dis-
tance is calculated based on the Pareto frontier by

ds(X,Y ) = inf
(X∗,Y ∗)

|Φ(X∗, Y ∗)|1 , (6)

where |...|1 is the L1-norm of the vector. Therefore, ds(X,Y ) measures the dis-
tance from the utopia (0, 0) to the closest point on the Pareto frontier. The
Salukwadze distance is then returned as the shape matching similarity score.
Figure 5 illustrates the calculation of the global optimal Pareto frontier and
Salukwadze distance.



Fig. 5: IS-Match returns similarities for all possible matches and lengths which allows
calculating a global optimal Pareto frontier. The Salukwadze distance is returned as
partial similarity score.

2.5 Computational Complexity

An exhaustive search over all possible matches for all possible lengths has a
complexity of O(2n+m). Our proposed approach based on integral image analysis
enables matching in O(nm) time, where n and m are the number of sampled
points on the two input shapes. We implemented our method in C, which enables
shape matching on a desktop PC within milliseconds.

For comparison, Table 1 summarizes complexities and runtimes of current
state-of-the-art shape matching methods. As it is shown in Section 3 only 30
sampled points are required to provide close to state-of-the-art shape retrieval
results, which is possible within only 3ms. Please note, that the runtimes may
vary due to differences in implementations and machine configurations. But as
can be seen in general IS-Match outperforms state-of-the-art concerning com-
putational complexity and actual runtime. To the best of our knowledge this
constitutes the fastest method for combinatorial matching of 2D shapes pub-
lished so far.

3 Experimental Evaluation

To evaluate the overall quality of IS-Match, we first analyzed the influence of the
number of sampled points and different parametrizations on the performance of
shape retrieval on a common database in Section 3.1. The evaluation shows that
only approximately 30 sampled points are required to achieve promising results,
where a single match only requires 3ms of computation time outperforming all



Table 1: Comparison of computational complexity and runtime in milliseconds for a
single match. Please note, that as it is shown in Figure 6 our algorithm only requires
30 points to achieve competitive results on reference data sets.

Method N Complexity Runtime

Felzenszwalb. [18] 100 O(m3k3) 500ms
Scott [10] 100 O(mnl) 450 ms
IDSC [9] 100 O(m2n) 310ms
SC [8] 100 O(m2n) 200ms
Schmidt [19] 200 O(m2log(m)) X
Brendel and Todorovic [5] 100 O(nm) X
IS-Match 30 O(nm) 3ms

other shape matching algorithms by an order of magnitude. Section 3.2 shows
results on the largest and currently most important benchmark for evaluating
shape matching algorithms, the MPEG-7 database.

3.1 Performance Analysis

To evaluate the influence of the number of sampled points and different param-
eterizations we applied IS-Match for the task of shape retrieval on the common
database of Sharvit et al. [20]. This database consists of 25 images of 6 differ-
ent classes. Each shape of the database was matched against every other shape
of the database and the global optimal Salukwadze distance as described in
Section 2.4 was calculated for every comparison. Then for every reference im-
age all the other shapes were ranked by increasing similarity value. To evaluate
the retrieval performance the number of correct first-, second- and third ranked
matches that belong to the right class was counted. In all the experiments ∆ was
set to 5, but experimental evaluations with different parameterizations revealed
that changing ∆ only has a small effect on shape retrieval performance.

Figure 6 illustrates the performance of our algorithm on this database, where
the sum over all correct first-, second- and third ranked matches is shown. There-
fore, the best achievable performance value is 75. We present results of IS-Match
in dependence of the number of sampled points. As can be seen by sampling
30 points we achieve the highest score of 25/25, 25/25, 24/25 which represents
state-of-the-art for this database as it is shown in Table 2.

3.2 Shape retrieval on MPEG-7 database

We further applied IS-Match to the MPEG-7 silhouette database [21] which
is currently the most popular database for shape matching evaluation. The
database consists of 70 shape categories, where each category is represented
by 20 different images with high intra-class variability. The parametrization of
our algorithm is based on the results shown in the previous section. The overall
shape matching performance was evaluated by calculating the so-called bullseye



rating, in which each image is used as reference and compared to all of the other
images. The mean percentage of correct images in the top 40 matches (the 40
images with the lowest shape similarity values) is taken as bullseye rating.

The measured bullseye rating for IS-Match was 84.79% and is compared to
state-of-the-art algorithms in Table 4. As can be the seen the score is close to
the best ever achieved by Felzenszwalb et al. [18] of 87.70%. But please note
that [18] uses a much more complex descriptor and requires about 500ms per
match. Therefore, analyzing the entire database takes approximately 136 hours
for [18], while with IS-Match all similarity scores are provided within a single
hour (!).

Fig. 6: Retrieval results in dependence of number of sampled points on database of [20]
consisting of 25 shapes of 6 different classes. Maximum achievable score is 75.

Table 2: Comparison of retrieval rates on database of [20] consisting of 25 shapes of
6 different classes. The number of correct first-, second- and third ranked matches is
shown.

Algorithm Top 1 Top 2 Top 3 Sum

Sharvit et al. [20] 23/25 21/25 20/25 64
Belongie et al. [8] 25/25 24/25 22/25 71
Scott and Nowak [10] 25/25 24/25 23/25 72
Ling and Jacobs [9] 25/25 24/25 25/25 74
IS-Match 25/25 25/25 24/25 74



Table 3: Comparison of retrieval rates and estimated overall runtimes in hours (!) for
calculating the full N × N similarity matrix on MPEG-7 database consisting of 1400
images showing 70 different classes.

Algorithm Mokht. [22] Belongie [8] Scott [10] Ling [23] Felz. [18] IS-Match

Score 75.44% 76.51% 82.46% 86.56% 87.70% 84.79%
Runtime X 54 h 122 h 84 h 136 h 1 h

Table 4: Comparison of retrieval rates and estimated overall runtimes in hours (!) for
calculating the full N × N similarity matrix on MPEG-7 database consisting of 1400
images showing 70 different classes.

Algorithm Belongie [8] Scott [10] Ling [23] Felz. [18] Graph [22] IS-Match

Score 76.51% 82.46% 86.56% 87.70% 88.59% 84.79%
Runtime 54 h 122 h 84 h 136 h 500 h 1 h

4 Conclusion

This paper introduced a partial shape matching method denoted as IS-Match. A
chord angle based descriptor is presented which in combination with an efficient
matching step allows detecting subparts of two shapes that possess high simi-
larity. We proposed a fast integral image based implementation which enables
matching two shapes within a few milliseconds. Shape retrieval experiments on
common databases like the MPEG-7 silhouette database proved that promis-
ing results are achieved at reduced computational costs. Due to the efficiency
of the proposed algorithm it is also suited for real-time applications as e. g. in
action recognition by matching human silhouettes to reference prototypes or for
tracking applications, which will be the focus of future work.
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